32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Muscle mass, strength, and physical function are known to decline with age. This is associated with the development of geriatric syndromes including sarcopenia and frailty. Dietary protein is essential for skeletal muscle function. Resistance exercise appears to be the most beneficial form of physical activity for preserving skeletal muscle and a synergistic effect has been noted when this is combined with dietary protein. However, older adults have shown evidence of anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis, and response is variable. Thus, the recommended daily amount of protein is greater for older people. The aetiologies and mechanisms responsible for anabolic resistance are not fully understood. The gut microbiota is implicated in many of the postulated mechanisms for anabolic resistance, either directly or indirectly. The gut microbiota change with age, and are influenced by dietary protein. Research also implies a role for the gut microbiome in skeletal muscle function. This leads to the hypothesis that the gut microbiome might modulate individual response to protein in the diet. We summarise the existing evidence for the role of the gut microbiota in anabolic resistance and skeletal muscle in aging people, and introduce the metabolome as a tool to probe this relationship in the future.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Influence of diet on the gut microbiome and implications for human health

          Recent studies have suggested that the intestinal microbiome plays an important role in modulating risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease, and cancer. At the same time, it is now understood that diet plays a significant role in shaping the microbiome, with experiments showing that dietary alterations can induce large, temporary microbial shifts within 24 h. Given this association, there may be significant therapeutic utility in altering microbial composition through diet. This review systematically evaluates current data regarding the effects of several common dietary components on intestinal microbiota. We show that consumption of particular types of food produces predictable shifts in existing host bacterial genera. Furthermore, the identity of these bacteria affects host immune and metabolic parameters, with broad implications for human health. Familiarity with these associations will be of tremendous use to the practitioner as well as the patient.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The fecal metabolome as a functional readout of the gut microbiome

            The human gut microbiome plays a key role in human health1, but 16S characterization lacks quantitative functional annotation2. The fecal metabolome provides a functional readout of microbial activity and could be used as an intermediate phenotype mediating these interactions3. In the first comprehensive description of the fecal metabolome, examining 1116 metabolites of 786 individuals from a population-based twin study (TwinsUK), the fecal metabolome was found to be only modestly influenced by host genetics (h2=17.9%). One replicated locus at the NAT2 gene was associated with fecal metabolic traits. The fecal metabolome largely reflects gut microbial composition explaining on average 67.7% (±18.8%) of its variance. It is strongly associated with visceral fat mass, illustrating potential mechanisms underlying the well-established microbial influence on abdominal obesity. Fecal metabolic profiling appears as a novel tool to explore links between microbiome composition, host phenotypes, and heritable complex traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids.

              Acetate, propionate, and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-(13)C]acetate, [2-(13)C]propionate, or [2,4-(13)C2]butyrate directly in the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion, pointing to microbial cross-feeding, was high between acetate and butyrate, low between butyrate and propionate, and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8 and 0.7%, respectively) and butyrate (2.7 and 0.9%, respectively) as substrates, but low or absent from propionate (0.6 and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately eightfold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6-h infusion period. Altogether, gut-derived acetate, propionate, and butyrate play important roles as substrates for glucose, cholesterol, and lipid metabolism.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                20 July 2018
                July 2018
                : 10
                : 7
                : 929
                Affiliations
                [1 ]The Department of Twin Research, Kings College London, 3-4th Floor South Wing Block D, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK; ruth.c.bowyer@ 123456kcl.ac.uk (R.C.E.B.); claire.j.steves@ 123456kcl.ac.uk (C.J.S.)
                [2 ]Clinical Age Research Unit, Kings College Hospital Foundation Trust, London SE5 9RS, UK
                Author notes
                Author information
                https://orcid.org/0000-0001-5702-1759
                https://orcid.org/0000-0002-4910-0489
                Article
                nutrients-10-00929
                10.3390/nu10070929
                6073774
                30036990
                cb543d90-55f5-4fe7-a020-c1e3f024723f
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 June 2018
                : 18 July 2018
                Categories
                Review

                Nutrition & Dietetics
                protein,skeletal muscle,sarcopenia,gut microbiome,metabolome,diet,supplementation
                Nutrition & Dietetics
                protein, skeletal muscle, sarcopenia, gut microbiome, metabolome, diet, supplementation

                Comments

                Comment on this article