32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Low Temperature Limit for Life on Earth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between −10°C and −26°C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below −50°C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above −20°C) and multicellular organisms (typically below −20°C). Few multicellular organisms can, however, complete their life cycle at temperatures below ∼−2°C.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Ice nucleation by particles immersed in supercooled cloud droplets.

          The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temperature dependence of metabolic rates for microbial growth, maintenance, and survival.

            Our work was motivated by discoveries of prokaryotic communities that survive with little nutrient in ice and permafrost, with implications for past or present microbial life in Martian permafrost and Europan ice. We compared the temperature dependence of metabolic rates of microbial communities in permafrost, ice, snow, clouds, oceans, lakes, marine and freshwater sediments, and subsurface aquifer sediments. Metabolic rates per cell fall into three groupings: (i) a rate, microg(T), for growth, measured in the laboratory at in situ temperatures with minimal disturbance of the medium; (ii) a rate, microm(T), sufficient for maintenance of functions but for a nutrient level too low for growth; and (iii) a rate, micros(T), for survival of communities imprisoned in deep glacial ice, subsurface sediment, or ocean sediment, in which they can repair macromolecular damage but are probably largely dormant. The three groups have metabolic rates consistent with a single activation energy of approximately 110 kJ and that scale as microg(T):microm(T):micros(T) approximately 10(6):10(3):1. There is no evidence of a minimum temperature for metabolism. The rate at -40 degrees C in ice corresponds to approximately 10 turnovers of cellular carbon per billion years. Microbes in ice and permafrost have metabolic rates similar to those in water, soil, and sediment at the same temperature. This finding supports the view that, far below the freezing point, liquid water inside ice and permafrost is available for metabolism. The rate micros(T) for repairing molecular damage by means of DNA-repair enzymes and protein-repair enzymes such as methyltransferase is found to be comparable to the rate of spontaneous molecular damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              LEA proteins prevent protein aggregation due to water stress.

              LEA (late embryogenesis abundant) proteins in both plants and animals are associated with tolerance to water stress resulting from desiccation and cold shock. However, although various functions of LEA proteins have been proposed, their precise role has not been defined. Recent bioinformatics studies suggest that LEA proteins might behave as molecular chaperones, and the current study was undertaken to test this hypothesis. Recombinant forms of AavLEA1, a group 3 LEA protein from the anhydrobiotic nematode Aphelenchus avenae, and Em, a group 1 LEA protein from wheat, have been subjected to functional analysis. Heat-stress experiments with citrate synthase, which is susceptible to aggregation at high temperatures, suggest that LEA proteins do not behave as classical molecular chaperones, but they do exhibit a protective, synergistic effect in the presence of the so-called chemical chaperone, trehalose. In contrast, both LEA proteins can independently protect citrate synthase from aggregation due to desiccation and freezing, in keeping with a role in water-stress tolerance; similar results were obtained with lactate dehydrogenase. This is the first evidence of anti-aggregation activity of LEA proteins due to water stress. Again, a synergistic effect of LEA and trehalose was observed, which is significant given that non-reducing disaccharides are known to accumulate during dehydration in plants and nematodes. A model is proposed whereby LEA proteins might act as a novel form of molecular chaperone, or 'molecular shield', to help prevent the formation of damaging protein aggregates during water stress.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                19 June 2013
                : 8
                : 6
                : e66207
                Affiliations
                [1 ]British Antarctic Survey, High Cross, Madingley Road, Cambridge, United Kingdom
                [2 ]School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
                [3 ]Asymptote Ltd, St John’s Innovation Centre, Cambridge, United Kingdom
                [4 ]Institut National de la Recherche Agronomique, Thiverval Grignon, France
                [5 ]School of Earth and Environment, University of Leeds, Leeds, United Kingdom
                University of Waterloo, Canada
                Author notes

                Competing Interests: The authors have the following interests. G. John Morris receives a salary from Asymptote. The work described in the paper was entirely without the activities of Asymptote. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: AC GJM FF BJM EA. Performed the experiments: GJM FF BJM EA HCP. Analyzed the data: AC GJM FF BJM EA HCP. Contributed reagents/materials/analysis tools: GJM FF BJM EA. Wrote the paper: AC GJM. Commented on all drafts of the paper: AC GJM FF BJM EA HCP.

                Article
                PONE-D-12-40208
                10.1371/journal.pone.0066207
                3686811
                23840425
                cb8e36f1-b91f-47f4-ad8a-fe4d133416ae
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 December 2012
                : 6 May 2013
                Page count
                Pages: 11
                Funding
                A.C. is retired but received emeritus support from the British Antarctic Survey, F.F. was supported by the Institut National de la Recherche Agronomique, and B.J.M. was supported by the Natural Environment Research Council (NE/D009308/1 and NE/H001050/1) and the European Research Council (240449– ICE). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Astronomical Sciences
                Astrobiology
                Extraterrestrial Life
                Extremophiles
                Biology
                Astrobiology
                Extraterrestrial Life
                Extremophiles
                Cryobiology
                Ecology
                Ecological Environments
                Terrestrial Environments
                Plant Ecology
                Plant-Environment Interactions
                Biogeography
                Ecophysiology
                Microbial Ecology
                Physiological Ecology
                Microbiology
                Microbial Ecology
                Microbial Metabolism

                Uncategorized
                Uncategorized

                Comments

                Comment on this article