7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular Plasmalogen Content Does Not Influence Arachidonic Acid Levels or Distribution in Macrophages: A Role for Cytosolic Phospholipase A 2γ in Phospholipid Remodeling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Availability of free arachidonic acid (AA) constitutes a rate limiting factor for cellular eicosanoid synthesis. AA distributes differentially across membrane phospholipids, which is largely due to the action of coenzyme A-independent transacylase (CoA-IT), an enzyme that moves the fatty acid primarily from diacyl phospholipid species to ether-containing species, particularly the ethanolamine plasmalogens. In this work, we examined the dependence of AA remodeling on plasmalogen content using the murine macrophage cell line RAW264.7 and its plasmalogen-deficient variants RAW.12 and RAW.108. All three strains remodeled AA between phospholipids with similar magnitude and kinetics, thus demonstrating that cellular plasmalogen content does not influence the process. Cell stimulation with yeast-derived zymosan also had no effect on AA remodeling, but incubating the cells in AA-rich media markedly slowed down the process. Further, knockdown of cytosolic-group IVC phospholipase A 2γ (cPLA 2γ) by RNA silencing significantly reduced AA remodeling, while inhibition of other major phospholipase A 2 forms such as cytosolic phospholipase A 2α, calcium-independent phospholipase A 2β, or secreted phospholipase A 2 had no effect. These results uncover new regulatory features of CoA-IT-mediated transacylation reactions in cellular AA homeostasis and suggest a hitherto unrecognized role for cPLA 2γ in maintaining membrane phospholipid composition via regulation of AA remodeling.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: not found
          • Article: not found

          Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.

            Genetic knockout of hormone-sensitive lipase in mice has implicated the presence of other intracellular triacylglycerol (TAG) lipases mediating TAG hydrolysis in adipocytes. Despite intense interest in these TAG lipases, their molecular identities thus far are largely unknown. Sequence data base searches for proteins containing calcium-independent phospholipase A2 (iPLA2) dual signature nucleotide ((G/A)XGXXG) and lipase (GXSXG) consensus sequence motifs identified a novel subfamily of three putative iPLA2/lipase family members designated iPLA2epsilon, iPLA2zeta, and iPLA2eta (previously named adiponutrin, TTS-2.2, and GS2, respectively) of previously unknown catalytic function. Herein we describe the cloning, heterologous expression, and affinity purification of the three human isoforms of this iPLA2 subfamily in Sf9 cells, and we demonstrate that each possesses abundant TAG lipase activity. Moreover, iPLA2epsilon, iPLA2zeta, and iPLA2eta also possess acylglycerol transacylase activity utilizing mono-olein as an acyl donor which, in the presence of mono-olein or diolein acceptors, results in the synthesis of diolein and triolein, respectively. (E)-6-(Bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one, a mechanism-based suicide substrate inhibitor of all known iPLA2s, inhibits the triglyceride lipase activity of each of the three isoforms similarly (IC50=0.1-0.5 microm). Quantitative PCR revealed dramatically increased expression of iPLA2epsilon and iPLA2zeta transcripts during the hormone-induced differentiation of 3T3-L1 cells into adipocytes and identified the presence of all three iPLA2 isoforms in human SW872 liposarcoma cells. Collectively, these results identify three novel TAG lipases/acylglycerol transacylases that likely participate in TAG hydrolysis and the acyl-CoA independent transacylation of acylglycerols, thereby facilitating energy mobilization and storage in adipocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms.

              Over one hundred different phospholipid molecular species are known to be present in mammalian cells and tissues. Fatty acid remodeling systems for phospholipids including acyl-CoA:lysophospholipid acyltransferases, CoA-dependent and CoA-independent transacylation systems, are involved in the biosynthesis of these molecular species. Acyl-CoA:lysophospholipid acyltransferase system is involved in the synthesis of phospholipid molecular species containing sn-1 saturated and sn-2 unsaturated fatty acids. The CoA-dependent transacylation system catalyzes the transfer of fatty acids esterified in phospholipids to lysophospholipids in the presence of CoA without the generation of free fatty acids. The CoA-dependent transacylation reaction in the rat liver exhibits strict fatty acid specificity, i.e., three types of fatty acids (20:4, 18:2 and 18:0) are transferred. On the other hand, CoA-independent transacylase catalyzes the transfer of C20 and C22 polyunsaturated fatty acids from diacyl phospholipids to various lysophospholipids, especially ether-containing lysophospholipids, in the absence of any cofactors. CoA-independent transacylase is assumed to be involved in the accumulation of PUFA in ether-containing phospholipids. These enzymes are involved in not only the remodeling of fatty acids, but also the synthesis and degradation of some bioactive lipids and their precursors. In this review, recent progresses in acyltransferase research including the identification of the enzyme's genes are described. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                31 July 2019
                August 2019
                : 8
                : 8
                : 799
                Affiliations
                [1 ]Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
                [2 ]Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
                [3 ]Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
                Author notes
                [* ]Correspondence: jbalsinde@ 123456ibgm.uva.es ; Tel.: +34-983-423-062
                Author information
                https://orcid.org/0000-0002-9966-7950
                https://orcid.org/0000-0003-3753-7082
                https://orcid.org/0000-0002-4157-6714
                Article
                cells-08-00799
                10.3390/cells8080799
                6721556
                31370188
                cbbd4d1e-1a25-4847-a949-246aecdf3bd7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 July 2019
                : 30 July 2019
                Categories
                Article

                arachidonic acid,eicosanoids,inflammation,phospholipid remodeling,phospholipase a2,monocytes/macrophages

                Comments

                Comment on this article