4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methionine adenosyltransferases in liver cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver ( e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          CYP2E1 and oxidative liver injury by alcohol.

          Ethanol-induced oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway seems to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide and, in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This review article summarizes some of the biochemical and toxicological properties of CYP2E1 and briefly describes the use of cell lines developed to constitutively express CYP2E1 and CYP2E1 knockout mice in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help us to understand the actions of CYP2E1 and its role in alcoholic liver injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease.

            Cirrhosis and liver cancer are potential outcomes of advanced nonalcoholic fatty liver disease (NAFLD). It is not clear what factors determine whether patients will develop advanced or mild NAFLD, limiting noninvasive diagnosis and treatment before clinical sequelae emerge. We investigated whether DNA methylation profiles can distinguish patients with mild disease from those with advanced NAFLD, and how these patterns are functionally related to hepatic gene expression. We collected frozen liver biopsies and clinical data from patients with biopsy-proven NAFLD (56 in the discovery cohort and 34 in the replication cohort). Samples were divided into groups based on histologic severity of fibrosis: F0-1 (mild) and F3-4 (advanced). DNA methylation profiles were determined and coupled with gene expression data from the same biopsies; differential methylation was validated in subsets of the discovery and replication cohorts. We then analyzed interactions between the methylome and transcriptome. Clinical features did not differ between patients known to have mild or advanced fibrosis based on biopsy analysis. There were 69,247 differentially methylated CpG sites (76% hypomethylated, 24% hypermethylated) in patients with advanced vs mild NAFLD (P < .05). Methylation at fibroblast growth factor receptor 2, methionine adenosyl methyltransferase 1A, and caspase 1 was validated by bisulfite pyrosequencing and the findings were reproduced in the replication cohort. Methylation correlated with gene transcript levels for 7% of differentially methylated CpG sites, indicating that differential methylation contributes to differences in expression. In samples with advanced NAFLD, many tissue repair genes were hypomethylated and overexpressed, and genes in certain metabolic pathways, including 1-carbon metabolism, were hypermethylated and underexpressed. Functionally relevant differences in methylation can distinguish patients with advanced vs mild NAFLD. Altered methylation of genes that regulate processes such as steatohepatitis, fibrosis, and carcinogenesis indicate the role of DNA methylation in progression of NAFLD. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma.

              Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide, accounting for an estimated 600,000 deaths annually. Aberrant methylation, consisting of DNA hypomethylation and/or promoter gene CpG hypermethylation, is implicated in the development of a variety of solid tumors, including HCC. We analyzed the global levels of DNA methylation as well as the methylation status of 105 putative tumor suppressor genes and found that the extent of genome-wide hypomethylation and CpG hypermethylation correlates with biological features and clinical outcome of HCC patients. We identified activation of Ras and downstream Ras effectors (ERK, AKT, and RAL) due to epigenetic silencing of inhibitors of the Ras pathway in all HCC. Further, selective inactivation of SPRY1 and -2, DAB2, and SOCS4 and -5 genes and inhibitors of angiogenesis (BNIP3, BNIP3L, IGFBP3, and EGLN2) was associated with poor prognosis. Importantly, several epigenetically silenced putative tumor suppressor genes found in HCC were also inactivated in the nontumorous liver. Our results assign both therapeutic and chemopreventive significance to methylation patterns in human HCC and open the possibility of using molecular targets, including those identified in this study, to effectively inhibit HCC development and progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Gastroenterol
                World J. Gastroenterol
                WJG
                World Journal of Gastroenterology
                Baishideng Publishing Group Inc
                1007-9327
                2219-2840
                21 August 2019
                21 August 2019
                : 25
                : 31
                : 4300-4319
                Affiliations
                Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
                Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
                Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
                CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
                Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States, shelly.lu@ 123456cshs.org
                Author notes

                Author contributions: Ben Murray and Lucia Barbier-Torres contributed equally in reviewing the literature and drafting of the manuscript. Wei Fan assisted in literature review and drafting of the manuscript. José M Mato provided critical reading of the manuscript. Shelly C Lu provided critical editing and revision of the manuscript. All authors approved the final version of the manuscript.

                Supported by National Institutes of Health, NIAAA, No. R01AA026759 (Lu); National Institutes of Health, NIDDK, No. R01DK107288 (Lu); National Institutes of Health, NCCIH, No. R01AT001576; National Institutes of Health, NCI, No. R01CA172086 (Lu and Mato); Agencia Estatal de Investigación MINECO, No. SAF 2017-88041-R; ISCiii PIE14/00031, No. CIBERehd-ISCiii; and Severo Ochoa Excellence Accreditation, No. SEV-2016-0644) (Mato).

                Corresponding author: Shelly C Lu, MD, Professor, Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Davis Building, Room No. 2097, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States. shelly.lu@ 123456cshs.org

                Telephone: +1-310-4235692 Fax: +1-310-4230653

                Article
                jWJG.v25.i31.pg4300
                10.3748/wjg.v25.i31.4300
                6710175
                31496615
                cbcdb672-d40b-45e7-ba99-d57c24ce6425
                ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 13 April 2019
                : 31 May 2019
                : 19 July 2019
                Categories
                Review

                methionine adenosyltransferases,s-adenosylmethionine,liver cancer,hepatocellular carcinoma,cholangiocarcinoma,biomarkers,therapeutic targets

                Comments

                Comment on this article