30
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was carried out to evaluate the ocular performance of a cationic Eudragit (EDU) RS 100-coated nanostructured lipid carrier (NLC). The genistein encapsulated NLC (GEN-NLC) was produced using the melt-emulsification technique followed by surface absorption of EDU RS 100. The EDU RS 100 increased the surface zeta potential from −7.46 mV to +13.60 mV, by uniformly forming a spherical coating outside the NLC surface, as shown by transmission electron microscopy images. The EDU RS 100 on the NLC surface effectively improved the NLC stability by inhibiting particle size growth. The obtained EDU RS 100-GEN-NLC showed extended precorneal clearance and a 1.22-fold increase in AUC (area under the curve) compared with the bare NLC in a Gamma scintigraphic evaluation. The EDU RS 100 modification also significantly increased corneal penetration producing a 3.3-fold increase in apparent permeability coefficients (P app) compared with references. Draize and cytotoxicity testing confirmed that the developed EDU RS 100-GEN-NLC was nonirritant to ocular tissues and nontoxic to corneal cells. These results indicate that the NLC surface modified by EDU RS 100 significantly improves the NLC properties and exhibits many advantages for ocular use.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The use of mucoadhesive polymers in ocular drug delivery.

          In the present update on mucoadhesive ocular dosage forms, the tremendous advances in the biochemistry of mucins, the development of new polymers, the use of drug complexes and other technological advances are discussed. This review focusses on recent literature regarding mucoadhesive liquid (viscous solutions, particulate systems), semi-solid (hydrogel, in situ gelling system) and solid dosage forms, with special attention to in vivo studies. Gel-forming minitablets and inserts made of thiomers show an interesting potential for future applications in the treatment of ocular diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery.

            In this study liposome coated with low molecular weight chitosan (LCH) was proposed and investigated its in vitro and in vivo properties, and its potential use in ocular drug delivery was evaluated. LCH with a molecular weight of 8kDa was prepared and coated on liposome loaded with diclofenac sodium. The LCH coating changed the liposome surface charge and slightly increased its particle size, while the drug encapsulation was not affected. After coating, the liposome displayed a prolonged in vitro drug release profile. LCH coated liposome also demonstrated an improved physicochemical stability at 25 degrees C in a 30-day storage period. The ocular bioadhesion property was evaluated by rabbit in vivo precorneal retention, and LCH coated liposome achieved a significantly prolonged retention compared with non-coated liposome or drug solution. The LCH coating also displayed a potential penetration enhancing effect for transcorneal delivery of the drug. In the ocular tolerance study, no irritation or toxicity was caused by continual administration of LCH coated liposome in a total period of 7 days. In conclusion, the LCH coating significantly modified the properties of liposome and brought a series of notable advantages for ocular drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application.

              Polymeric nanoparticle suspensions were prepared from Eudragit RS100R and RL100R polymer resins and loaded with flurbiprofen (FLU), with the aim at improving the availability of the drug at an intra-ocular level for the prevention of the myosis induced during extracapsular cataract surgery. Nanosuspensions were prepared by a quasi-emulsion solvent diffusion technique using different formulation parameters (drug-to-polymer ratio, initial polymer concentration, agitation speed, etc.). The resulting nanoparticles showed mean sizes around 100 nm and a fixed positive charge (zeta-potential around +40/+60 mV). Stability tests after mid-time storage (4 degrees C or room temperature) or freeze-drying were carried out to optimise a possible final pharmaceutical preparation. In vitro, dissolution tests showed a controlled release profile of FLU from the nanoparticles. In vivo anti-inflammatory efficacy was assessed in the rabbit eye after induction of an ocular trauma (paracentesis). FLU-loaded nanosuspensions did not show toxicity on ocular tissues. Moreover, an inhibition of the miotic response to the surgical trauma comparable to a control eye-drop formulation was obtained, even though an actual lower concentration of free drug in the conjunctival sac was achieved from the nanoparticle system. Drug levels in the aqueous humour were also higher after application of the nanosuspensions.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2014
                11 September 2014
                : 9
                : 4305-4315
                Affiliations
                [1 ]Department of Pharmaceutics, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
                [2 ]Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, People’s Republic of China
                [3 ]Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
                Author notes
                Correspondence: Jun Kong, Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, People’s Republic of China, Tel +86 13 06652 1123, Fax +86 24 2352 8875, Email kongjun@ 123456hotmail.com
                Weisan Pan, Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People’s Republic of China, Tel +86 24 2398 6313, Fax +86 24 2395 3241, Email pwstfzy@ 123456126.com

                *These authors contributed equally to this work

                Article
                ijn-9-4305
                10.2147/IJN.S63414
                4166257
                25246787
                cbed3dea-29ec-4a60-bdcd-71afadc6dddb
                © 2014 Zhang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                genistein,precorneal retention,cytotoxicity
                Molecular medicine
                genistein, precorneal retention, cytotoxicity

                Comments

                Comment on this article