26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the year 2000, Hanahan and Weinberg ( 1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) ( 2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.

          Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)-matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6+/-0.4 versus 7.9+/-0.5 microg/mL in men, 7.6+/-0.7 versus 11.7+/-1.0 microg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0+/-0.4 versus 6.6+/-0.4 microg/mL, P<0.001 in men; 6.3+/-0.8 versus 7.6+/-0. 7 microg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fasting plasma insulin (r=-0.18, P<0.01) and glucose (r=-0.26, P<0.001) levels. In multivariate analysis, plasma insulin did not independently affect the plasma adiponectin levels. BMI, serum triglyceride concentration, and the presence of diabetes or CAD remained significantly related to plasma adiponectin concentrations. Weight reduction significantly elevated plasma adiponectin levels in the diabetic subjects as well as the nondiabetic subjects. These results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of adiponectin in cancer: a review of current evidence.

            Excess body weight is associated not only with an increased risk of type 2 diabetes and cardiovascular disease (CVD) but also with various types of malignancies. Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, antiinflammatory, antiatherogenic, proapoptotic, and antiproliferative properties. Circulating adiponectin levels, which are determined predominantly by genetic factors, diet, physical activity, and abdominal adiposity, are decreased in patients with diabetes, CVD, and several obesity-associated cancers. Also, adiponectin levels are inversely associated with the risk of developing diabetes, CVD, and several malignancies later in life. Many cancer cell lines express adiponectin receptors, and adiponectin in vitro limits cell proliferation and induces apoptosis. Recent in vitro studies demonstrate the antiangiogenic and tumor growth-limiting properties of adiponectin. Studies in both animals and humans have investigated adiponectin and adiponectin receptor regulation and expression in several cancers. Current evidence supports a role of adiponectin as a novel risk factor and potential diagnostic and prognostic biomarker in cancer. In addition, either adiponectin per se or medications that increase adiponectin levels or up-regulate signaling pathways downstream of adiponectin may prove to be useful anticancer agents. This review presents the role of adiponectin in carcinogenesis and cancer progression and examines the pathophysiological mechanisms that underlie the association between adiponectin and malignancy in the context of a dysfunctional adipose tissue in obesity. Understanding of these mechanisms may be important for the development of preventive and therapeutic strategies against obesity-associated malignancies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting the bone marrow microenvironment in multiple myeloma.

              Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, MM is still a fatal malignancy. This is mainly due to the supportive role of the BM microenvironment in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM microenvironment is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a non-cellular compartment. In this review, we discuss the interaction between the malignant plasma cell and the BM microenvironment and the strategy to target them.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/304897
                URI : http://frontiersin.org/people/u/354126
                URI : http://frontiersin.org/people/u/288168
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                17 June 2016
                2016
                : 7
                : 67
                Affiliations
                [1] 1Reagan Laboratory, Maine Medical Center Research Institute , Scarborough, ME, USA
                [2] 2School of Biomedical Sciences and Engineering, University of Maine , Orono, ME, USA
                [3] 3School of Medicine, Tufts University , Boston, MA, USA
                Author notes

                Edited by: Erica Lynn Scheller, Washington University School of Medicine, USA

                Reviewed by: Graziana Colaianni, University of Bari, Italy; Izabela Podgorski, Wayne State University School of Medicine, USA

                *Correspondence: Michaela R. Reagan, mreagan@ 123456mmc.org

                Specialty section: This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2016.00067
                4911365
                27379019
                cbf3142e-624f-400f-b733-fed53b45c37e
                Copyright © 2016 Falank, Fairfield and Reagan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 May 2016
                : 03 June 2016
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 183, Pages: 15, Words: 13893
                Funding
                Funded by: National Institute of General Medical Sciences 10.13039/100000057
                Award ID: P30 GM106391, P30GM103392
                Funded by: National Institute of Diabetes and Digestive and Kidney Diseases 10.13039/100000062
                Award ID: DK092759-01
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                bone marrow adipose,bmat,mat,adipocyte,microenvironment,multiple myeloma,fatty acids,bone metastasis

                Comments

                Comment on this article