4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Large-Scale Virtual Screening for the Discovery of SARS-CoV-2 Papain-like Protease (PLpro) Non-covalent Inhibitors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity

            The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread 1,2 . PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses 3–5 . Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The properties of known drugs. 1. Molecular frameworks.

              In order to better understand the common features present in drug molecules, we use shape description methods to analyze a database of commercially available drugs and prepare a list of common drug shapes. A useful way of organizing this structural data is to group the atoms of each drug molecule into ring, linker, framework, and side chain atoms. On the basis of the two-dimensional molecular structures (without regard to atom type, hybridization, and bond order), there are 1179 different frameworks among the 5120 compounds analyzed. However, the shapes of half of the drugs in the database are described by the 32 most frequently occurring frameworks. This suggests that the diversity of shapes in the set of known drugs is extremely low. In our second method of analysis, in which atom type, hybridization, and bond order are considered, more diversity is seen; there are 2506 different frameworks among the 5120 compounds in the database, and the most frequently occurring 42 frameworks account for only one-fourth of the drugs. We discuss the possible interpretations of these findings and the way they may be used to guide future drug discovery research.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Chemical Information and Modeling
                J. Chem. Inf. Model.
                American Chemical Society (ACS)
                1549-9596
                1549-960X
                April 10 2023
                March 17 2023
                April 10 2023
                : 63
                : 7
                : 2158-2169
                Affiliations
                [1 ]Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
                [2 ]Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
                [3 ]Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
                [4 ]Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
                [5 ]Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
                Article
                10.1021/acs.jcim.2c01641
                cc1c1839-1655-4a96-9ba1-b15f1129fe69
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article