46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noonan syndrome

      review-article
      1 ,
      Orphanet Journal of Rare Diseases
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Noonan Syndrome (NS) is characterised by short stature, typical facial dysmorphology and congenital heart defects. The incidence of NS is estimated to be between 1:1000 and 1:2500 live births. The main facial features of NS are hypertelorism with down-slanting palpebral fissures, ptosis and low-set posteriorly rotated ears with a thickened helix. The cardiovascular defects most commonly associated with this condition are pulmonary stenosis and hypertrophic cardiomyopathy. Other associated features are webbed neck, chest deformity, mild intellectual deficit, cryptorchidism, poor feeding in infancy, bleeding tendency and lymphatic dysplasias. The syndrome is transmitted as an autosomal dominant trait. In approximately 50% of cases, the disease is caused by missense mutations in the PTPN11 gene on chromosome 12, resulting in a gain of function of the non-receptor protein tyrosine phosphatase SHP-2 protein. Recently, mutations in the KRAS gene have been identified in a small proportion of patients with NS. A DNA test for mutation analysis can be carried out on blood, chorionic villi and amniotic fluid samples. NS should be considered in all foetuses with polyhydramnion, pleural effusions, oedema and increased nuchal fluid with a normal karyotype. With special care and counselling, the majority of children with NS will grow up and function normally in the adult world. Management should address feeding problems in early childhood, evaluation of cardiac function and assessment of growth and motor development. Physiotherapy and/or speech therapy should be offered if indicated. A complete eye examination and hearing evaluation should be performed during the first few years of schooling. Preoperative coagulation studies are indicated. Signs and symptoms lessen with age and most adults with NS do not require special medical care.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.

          Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling.

            Src homology-2 (SH2) domain-containing phosphatases (Shps) are a small, highly conserved subfamily of protein-tyrosine phosphatases, members of which are present in both vertebrates and invertebrates. The mechanism of regulation of Shps by ligand binding is now well understood. Much is also known about the normal signaling pathways regulated by each Shp and the consequences of Shp deficiency. Recent studies have identified mutations in human Shp2 as the cause of the inherited disorder Noonan syndrome. Shp2 mutations might also contribute to the pathogenesis of some leukemias. In addition, Shp2 might be a key virulence determinant for the important human pathogen Helicobacter pylori. Despite these efforts, however, the key targets of each Shp have remained elusive. Identifying these substrates remains a major challenge for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Germline KRAS mutations cause Noonan syndrome.

              Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause approximately 50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage-specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                2007
                14 January 2007
                : 2
                : 4
                Affiliations
                [1 ]Department of Human Genetics, University Medical Centre st Radboud, PO Box 9101, 6500 HB Nijmegen, The Netherlands
                Article
                1750-1172-2-4
                10.1186/1750-1172-2-4
                1781428
                17222357
                cc4f3327-c402-4d40-b710-51ea3cce1a7e
                Copyright © 2007 van der Burgt; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 October 2006
                : 14 January 2007
                Categories
                Review

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article