5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chirality in adsorption on solid surfaces

      1 , 2 , 3 , 4
      Chemical Society Reviews
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemical chirality on solid surfaces has important implications in analytical separations, selective crystallizations and catalysis, and may help explain the origin of homochirality in life.

          Abstract

          In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called “sergeants and soldiers” phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral chromatography, and enantioselective catalysis.

          Related collections

          Most cited references334

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution.

          Structural information on nanometer-sized gold particles has been limited, due in part to the problem of preparing homogeneous material. Here we report the crystallization and x-ray structure determination of a p-mercaptobenzoic acid (p-MBA)-protected gold nanoparticle, which comprises 102 gold atoms and 44 p-MBAs. The central gold atoms are packed in a Marks decahedron, surrounded by additional layers of gold atoms in unanticipated geometries. The p-MBAs interact not only with the gold but also with one another, forming a rigid surface layer. The particles are chiral, with the two enantiomers alternating in the crystal lattice. The discrete nature of the particle may be explained by the closing of a 58-electron shell.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Specification of Molecular Chirality

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amplification of chirality in dynamic supramolecular aggregates.

              The quest to understand the origin of chirality in biological systems has evoked an intense search for nonlinear effects in catalysis and pathways to amplify slight enantiomeric excesses in racemates to give optically pure molecules. The amplification of chirality in polymeric systems as a result of cooperative processes has been intensely investigated. Ten years ago, this effect was shown for the first time in noncovalent dynamic supramolecular systems. Since then, it has become clear that a subtle interplay of noncovalent interactions such as hydrogen-bonding, pi-pi stacking, and hydrophobic interactions is also sufficient to observe amplification of chirality in small molecules. Here we summarize the results obtained over the past decade and the general guidelines we can deduce from them. Predicting amplification of chirality is still impossible, but it appears to be a balance between different types of interactions, the formation of an intrinsically chiral object, and cooperative aggregation processes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                2017
                2017
                : 46
                : 23
                : 7374-7398
                Affiliations
                [1 ]Department of Chemistry and UCR Center for Catalysis
                [2 ]University of California
                [3 ]Riverside
                [4 ]USA
                Article
                10.1039/C7CS00367F
                29043322
                cc530420-abfa-4be3-aae1-3bc764b3d448
                © 2017

                Free to read

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article