12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NDRG4 hypermethylation is a potential biomarker for diagnosis and prognosis of gastric cancer in Chinese population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to assess whether N-Myc downstream regulated gene 4 ( NDRG4) methylation was associated with the diagnosis and prognosis of gastric cancer, we measured the methylation of NDRG4 promoter and gene body regions among 110 gastric cancer patients using quantitative methods (MethyLight and pyrosequencing). Both NDRG4 promoter and gene body methylation levels were increased in tumor tissues than paired adjacent normal tissues ( P < 0.001). NDRG4 gene body methylation was found to be significantly associated with age and tumor differentiation. NDRG4 promoter hypermethylation was proved to be a predictor of poor overall survival. However, opposite result was observed among The Cancer Genome Atlas (TCGA) cohort. The findings from gastric cell lines and public databases have suggested that NDRG4 methylation level was inversely associated with NDRG4 transcription level. Subsequent luciferase reporter gene assay showed that promoter CpG island but not gene body CpG island was able to upregulate gene expression. Collectively, NDRG4 promoter hypermethylation contributed to the risk of gastric cancer and predicted a poor prognosis in Chinese gastric cancer patients. Moreover, the combined methylation levels of NDRG4 promoter and gene body served as diagnostic biomarkers in gastric cancer.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Gene body methylation can alter gene expression and is a therapeutic target in cancer.

          DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression, yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the overexpression of genes, many of which are involved in metabolic processes regulated by c-MYC. Downregulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may, therefore, be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene overexpression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome aberrations in solid tumors.

            Chromosome aberrations in human solid tumors are hallmarks of gene deregulation and genome instability. This review summarizes current knowledge regarding aberrations, discusses their functional importance, suggests mechanisms by which aberrations may form during cancer progression and provides examples of clinical advances that have come from studies of chromosome aberrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A.

              The zinc finger DNA-binding motif occurs in many proteins that regulate eukaryotic gene expression. The crystal structure of a complex containing the three zinc fingers from Zif268 (a mouse immediate early protein) and a consensus DNA-binding site has been determined at 2.1 angstroms resolution and refined to a crystallographic R factor of 18.2 percent. In this complex, the zinc fingers bind in the major groove of B-DNA and wrap part way around the double helix. Each finger has a similar relation to the DNA and makes its primary contacts in a three-base pair subsite. Residues from the amino-terminal portion of an alpha helix contact the bases, and most of the contracts are made with the guanine-rich strand of the DNA. This structure provides a framework for understanding how zinc fingers recognize DNA and suggests that this motif may provide a useful basis for the design of novel DNA-binding proteins.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                31 January 2017
                22 December 2016
                : 8
                : 5
                : 8105-8119
                Affiliations
                1 Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
                2 Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
                Author notes
                Correspondence to: Shiwei Duan, duanshiwei@ 123456nbu.edu.cn
                Article
                14099
                10.18632/oncotarget.14099
                5352386
                28042954
                cc78203a-2cea-4399-8973-98249b5fa494
                Copyright: © 2017 Chen et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 September 2016
                : 23 November 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                gastric cancer,n-myc downstream regulated gene 4,dna methylation,prognosis,diagnosis

                Comments

                Comment on this article