Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytophthora betacei, a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past few years, symptoms akin to late blight disease have been reported on a variety of crop plants in South America. Despite the economic importance of these crops, the causal agents of the diseases belonging to the genus Phytophthora have not been completely characterized. In this study, a new Phytophthora species was described in Colombia from tree tomato ( Solanum betaceum), a semi-domesticated fruit grown in northern South America. Comprehensive phylogenetic, morphological, population genetic analyses, and infection assays to characterize this new species, were conducted. All data support the description of the new species, Phytophthora betacei sp. nov. Phylogenetic analyses suggest that this new species belongs to clade 1c of the genus Phytophthora and is a close relative of the potato late blight pathogen, P. infestans. Furthermore, it appeared as the sister group of the P. andina strains collected from wild Solanaceae (clonal lineage EC-2). Analyses of morphological and physiological characters as well as host specificity showed high support for the differentiation of these species. Based on these results, a complete description of the new species is provided and the species boundaries within Phytophthora clade 1c in northern South America are discussed.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

          We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular phylogeny of Phytophthora and related oomycetes.

            Phylogenetic relationships among 50 Phytophthora species and between Phytophthora and other oomycetes were examined on the basis of the ITS sequences of genomic rDNA. Phytophthora grouped with Pythium, Peronospora, and Halophytophthora, distant from genera in the Saprolegniales. Albugo was intermediate between these two groups. Unlike Pythium, Phytophthora was essentially monophyletic, all but three species forming a cluster of eight clades. Two clades contained only species with nonpapillate sporangia. The other six clades included either papillate and semipapillate, or semipapillate and nonpapillate types, transcending traditional morphological groupings, which are evidently not natural assemblages. Peronospora was related to P. megakarya and P. palmivora and appears to be derived from a Phytophthora that has both lost the ability to produce zoospores and become an obligate biotroph. Three other Phytophthoras located some distance from the main Phytophthora-Peronospora cluster probably represent one or more additional genera.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delimiting species without monophyletic gene trees.

              Genetic data are frequently used to delimit species, where species status is determined on the basis of an exclusivity criterium, such as reciprocal monophyly. Not only are there numerous empirical examples of incongruence between the boundaries inferred from such data compared to other sources like morphology -- especially with recently derived species, but population genetic theory also clearly shows that an inevitable bias in species status results because genetic thresholds do not explicitly take into account how the timing of speciation influences patterns of genetic differentiation. This study represents a fundamental shift in how genetic data might be used to delimit species. Rather than equating gene trees with a species tree or basing species status on some genetic threshold, the relationship between the gene trees and the species history is modeled probabilistically. Here we show that the same theory that is used to calculate the probability of reciprocal monophyly can also be used to delimit species despite widespread incomplete lineage sorting. The results from a preliminary simulation study suggest that very recently derived species can be accurately identified long before the requisite time for reciprocal monophyly to be achieved following speciation. The study also indicates the importance of sampling, both with regards to loci and individuals. Withstanding a thorough investigation into the conditions under which the coalescent-based approach will be effective, namely how the timing of divergence relative to the effective population size of species affects accurate species delimitation, the results are nevertheless consistent with other recent studies (aimed at inferring species relationships), showing that despite the lack of monophyletic gene trees, a signal of species divergence persists and can be extracted. Using an explicit model-based approach also avoids two primary problems with species delimitation that result when genetic thresholds are applied with genetic data -- the inherent biases in species detection arising from when and how speciation occurred, and failure to take into account the high stochastic variance of genetic processes. Both the utility and sensitivities of the coalescent-based approach outlined here are discussed; most notably, a model-based approach is essential for determining whether incompletely sorted gene lineages are (or are not) consistent with separate species lineages, and such inferences require accurate model parameterization (i.e., a range of realistic effective population sizes relative to potential times of divergence for the purported species). It is the goal (and motivation of this study) that genetic data might be used effectively as a source of complementation to other sources of data for diagnosing species, as opposed to the exclusion of other evidence for species delimitation, which will require an explicit consideration of the effects of the temporal dynamic of lineage splitting on genetic data.
                Bookmark

                Author and article information

                Journal
                Persoonia
                Persoonia
                Persoonia
                Persoonia : Molecular Phylogeny and Evolution of Fungi
                Nationaal Herbarium Nederland & Centraallbureau voor Schimmelcultures
                0031-5850
                1878-9080
                1 February 2018
                December 2018
                : 41
                : 39-55
                Affiliations
                [1 ]Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
                [2 ]Biology Department, University of North Carolina, Chapel Hill, USA.
                [3 ]Head of Microscopy Core (MCUA), Vice-Presidency of Research, Universidad de Los Andes, Bogotá, Colombia.
                [4 ]Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA.
                [5 ]Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
                [6 ]Biology Department, Universidad de Nariño, Pasto, Colombia.
                [7 ]School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA.
                [8 ]Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
                Author notes
                corresponding author e-mail: srestrep@ 123456uniandes.edu.co .
                Article
                10.3767/persoonia.2018.41.03
                6344807
                30728598
                ccaf1320-b6b1-442c-b67b-911165ea9b57
                © 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute

                You are free to share - to copy, distribute and transmit the work, under the following conditions:

                Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

                Non-commercial: You may not use this work for commercial purposes.

                No derivative works: You may not alter, transform, or build upon this work.

                For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

                History
                : 9 March 2017
                : 12 September 2017
                Categories
                Research Article

                Plant science & Botany
                host specificity,microsatellites,oomycetes,species delimitation,tree tomato
                Plant science & Botany
                host specificity, microsatellites, oomycetes, species delimitation, tree tomato

                Comments

                Comment on this article