38
views
0
recommends
+1 Recommend
3 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Sex Differences in Stroke Incidence, Prevalence, Mortality and Disability-Adjusted Life Years: Results from the Global Burden of Disease Study 2013

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Accurate information on stroke burden in men and women are important for evidence-based healthcare planning and resource allocation. Previously, limited research suggested that the absolute number of deaths from stroke in women was greater than in men, but the incidence and mortality rates were greater in men. However, sex differences in various metrics of stroke burden on a global scale have not been a subject of comprehensive and comparable assessment for most regions of the world, nor have sex differences in stroke burden been examined for trends over time. Methods: Stroke incidence, prevalence, mortality, disability-adjusted life years (DALYs) and healthy years lost due to disability were estimated as part of the Global Burden of Disease (GBD) 2013 Study. Data inputs included all available information on stroke incidence, prevalence and death and case fatality rates. Analysis was performed separately by sex and 5-year age categories for 188 countries. Statistical models were employed to produce globally comprehensive results over time. All rates were age-standardized to a global population and 95% uncertainty intervals (UIs) were computed. Findings: In 2013, global ischemic stroke (IS) and hemorrhagic stroke (HS) incidence (per 100,000) in men (IS 132.77 (95% UI 125.34-142.77); HS 64.89 (95% UI 59.82-68.85)) exceeded those of women (IS 98.85 (95% UI 92.11-106.62); HS 45.48 (95% UI 42.43-48.53)). IS incidence rates were lower in 2013 compared with 1990 rates for both sexes (1990 male IS incidence 147.40 (95% UI 137.87-157.66); 1990 female IS incidence 113.31 (95% UI 103.52-123.40)), but the only significant change in IS incidence was among women. Changes in global HS incidence were not statistically significant for males (1990 = 65.31 (95% UI 61.63-69.0), 2013 = 64.89 (95% UI 59.82-68.85)), but was significant for females (1990 = 64.892 (95% UI 59.82-68.85), 2013 = 45.48 (95% UI 42.427-48.53)). The number of DALYs related to IS rose from 1990 (male = 16.62 (95% UI 13.27-19.62), female = 17.53 (95% UI 14.08-20.33)) to 2013 (male = 25.22 (95% UI 20.57-29.13), female = 22.21 (95% UI 17.71-25.50)). The number of DALYs associated with HS also rose steadily and was higher than DALYs for IS at each time point (male 1990 = 29.91 (95% UI 25.66-34.54), male 2013 = 37.27 (95% UI 32.29-45.12); female 1990 = 26.05 (95% UI 21.70-30.90), female 2013 = 28.18 (95% UI 23.68-33.80)). Interpretation: Globally, men continue to have a higher incidence of IS than women while significant sex differences in the incidence of HS were not observed. The total health loss due to stroke as measured by DALYs was similar for men and women for both stroke subtypes in 2013, with HS higher than IS. Both IS and HS DALYs show an increasing trend for both men and women since 1990, which is statistically significant only for IS among men. Ongoing monitoring of sex differences in the burden of stroke will be needed to determine if disease rates among men and women continue to diverge. Sex disparities related to stroke will have important clinical and policy implications that can guide funding and resource allocation for national, regional and global health programs.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found

          Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013

          The Lancet, 385(9963), 117-171
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study.

            The global burden of atrial fibrillation (AF) is unknown. We systematically reviewed population-based studies of AF published from 1980 to 2010 from the 21 Global Burden of Disease regions to estimate global/regional prevalence, incidence, and morbidity and mortality related to AF (DisModMR software). Of 377 potential studies identified, 184 met prespecified eligibility criteria. The estimated number of individuals with AF globally in 2010 was 33.5 million (20.9 million men [95% uncertainty interval (UI), 19.5-22.2 million] and 12.6 million women [95% UI, 12.0-13.7 million]). Burden associated with AF, measured as disability-adjusted life-years, increased by 18.8% (95% UI, 15.8-19.3) in men and 18.9% (95% UI, 15.8-23.5) in women from 1990 to 2010. In 1990, the estimated age-adjusted prevalence rates of AF (per 100 000 population) were 569.5 in men (95% UI, 532.8-612.7) and 359.9 in women (95% UI, 334.7-392.6); the estimated age-adjusted incidence rates were 60.7 per 100 000 person-years in men (95% UI, 49.2-78.5) and 43.8 in women (95% UI, 35.9-55.0). In 2010, the prevalence rates increased to 596.2 (95% UI, 558.4-636.7) in men and 373.1 (95% UI, 347.9-402.2) in women; the incidence rates increased to 77.5 (95% UI, 65.2-95.4) in men and 59.5 (95% UI, 49.9-74.9) in women. Mortality associated with AF was higher in women and increased by 2-fold (95% UI, 2.0-2.2) and 1.9-fold (95% UI, 1.8-2.0) in men and women, respectively, from 1990 to 2010. There was evidence of significant regional heterogeneity in AF estimations and availability of population-based data. These findings provide evidence of progressive increases in overall burden, incidence, prevalence, and AF-associated mortality between 1990 and 2010, with significant public health implications. Systematic, regional surveillance of AF is required to better direct prevention and treatment strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study.

              The contribution of various risk factors to the burden of stroke worldwide is unknown, particularly in countries of low and middle income. We aimed to establish the association of known and emerging risk factors with stroke and its primary subtypes, assess the contribution of these risk factors to the burden of stroke, and explore the differences between risk factors for stroke and myocardial infarction. We undertook a standardised case-control study in 22 countries worldwide between March 1, 2007, and April 23, 2010. Cases were patients with acute first stroke (within 5 days of symptoms onset and 72 h of hospital admission). Controls had no history of stroke, and were matched with cases for age and sex. All participants completed a structured questionnaire and a physical examination, and most provided blood and urine samples. We calculated odds ratios (ORs) and population-attributable risks (PARs) for the association of all stroke, ischaemic stroke, and intracerebral haemorrhagic stroke with selected risk factors. In the first 3000 cases (n=2337, 78%, with ischaemic stroke; n=663, 22%, with intracerebral haemorrhagic stroke) and 3000 controls, significant risk factors for all stroke were: history of hypertension (OR 2.64, 99% CI 2.26-3.08; PAR 34.6%, 99% CI 30.4-39.1); current smoking (2.09, 1.75-2.51; 18.9%, 15.3-23.1); waist-to-hip ratio (1.65, 1.36-1.99 for highest vs lowest tertile; 26.5%, 18.8-36.0); diet risk score (1.35, 1.11-1.64 for highest vs lowest tertile; 18.8%, 11.2-29.7); regular physical activity (0.69, 0.53-0.90; 28.5%, 14.5-48.5); diabetes mellitus (1.36, 1.10-1.68; 5.0%, 2.6-9.5); alcohol intake (1.51, 1.18-1.92 for more than 30 drinks per month or binge drinking; 3.8%, 0.9-14.4); psychosocial stress (1.30, 1.06-1.60; 4.6%, 2.1-9.6) and depression (1.35, 1.10-1.66; 5.2%, 2.7-9.8); cardiac causes (2.38, 1.77-3.20; 6.7%, 4.8-9.1); and ratio of apolipoproteins B to A1 (1.89, 1.49-2.40 for highest vs lowest tertile; 24.9%, 15.7-37.1). Collectively, these risk factors accounted for 88.1% (99% CI 82.3-92.2) of the PAR for all stroke. When an alternate definition of hypertension was used (history of hypertension or blood pressure >160/90 mm Hg), the combined PAR was 90.3% (85.3-93.7) for all stroke. These risk factors were all significant for ischaemic stroke, whereas hypertension, smoking, waist-to-hip ratio, diet, and alcohol intake were significant risk factors for intracerebral haemorrhagic stroke. Our findings suggest that ten risk factors are associated with 90% of the risk of stroke. Targeted interventions that reduce blood pressure and smoking, and promote physical activity and a healthy diet, could substantially reduce the burden of stroke. Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Canadian Stroke Network, Pfizer Cardiovascular Award, Merck, AstraZeneca, and Boehringer Ingelheim. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                NED
                Neuroepidemiology
                10.1159/issn.0251-5350
                Neuroepidemiology
                Neuroepidemiology
                S. Karger AG (Basel, Switzerland karger@ 123456karger.com http://www.karger.com )
                978-3-318-05652-5
                978-3-318-05653-2
                0251-5350
                1423-0208
                October 2015
                28 October 2015
                : 45
                : 3
                : 203-214
                Affiliations
                aSchool of Psychology, The University of Auckland and bNational Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, AUT University, Auckland, New Zealand; cClinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; dDepartment of Global Health, School of Medicine and Public Health, and eInstitute for Health Metrics and Evaluation and fDivision of Cardiology, School of Medicine, University of Washington, Seattle, Wash., gCenter for Translation Research and Implementation Science and Division of Cardiovascular Sciences; National Heart, Lung, and Blood Institute; National Institutes of Health, Bethesda, Md., USA
                Article
                NED2015045003203 PMC4632242 Neuroepidemiology 2015;45:203-214
                10.1159/000441103
                PMC4632242
                26505984
                ccb2ca7b-2560-4ad5-a332-2ac779f2da82
                © 2015 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 20 July 2015
                : 15 September 2015
                Page count
                Figures: 1, Tables: 4, References: 62, Pages: 12
                Categories
                Original Paper

                Medicine,General social science
                Sex differences,Stroke,Epidemiology,Burden,Global
                Medicine, General social science
                Sex differences, Stroke, Epidemiology, Burden, Global

                Comments

                Comment on this article