20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Neuropsychiatric Disease and Treatment (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on all aspects of neuropsychiatric and neurological disorders. Sign up for email alerts here.

      63,741 Monthly downloads/views I 2.989 Impact Factor I 4.5 CiteScore I 1.09 Source Normalized Impact per Paper (SNIP) I 0.744 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of M 1 and M 4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) and schizophrenia (SZ) are neurological disorders with overlapping symptomatology, including both cognitive deficits and behavioral disturbances. Current clinical treatments for both disorders have limited efficacy accompanied by dose-limiting side effects, and ultimately fail to adequately address the broad range of symptoms observed. Novel therapeutic options for AD and SZ are needed to better manage the spectrum of symptoms with reduced adverse-effect liability. Substantial evidence suggests that activation of muscarinic acetylcholine receptors (mAChRs) has the potential to treat both cognitive and psychosis-related symptoms associated with numerous central nervous system (CNS) disorders. However, use of nonselective modulators of mAChRs is hampered by dose-limiting peripheral side effects that limit their clinical utility. In order to maintain the clinical efficacy without the adverse-effect liability, efforts have been focused on the discovery of compounds that selectively modulate the centrally located M 1 and M 4 mAChR subtypes. Previous drug discovery attempts have been thwarted by the highly conserved nature of the acetylcholine site across mAChR subtypes. However, current efforts by our laboratory and others have now focused on modulators that bind to allosteric sites on mAChRs, allowing these compounds to display unprecedented subtype selectivity. Over the past couple of decades, the discovery of small molecules capable of selectively targeting the M 1 or M 4 mAChR subtypes has allowed researchers to elucidate the roles of these receptors in regulating cognitive and behavioral disturbances in preclinical animal models. Here, we provide an overview of these promising preclinical and clinical studies, which suggest that M 1- and M 4-selective modulators represent viable novel targets with the potential to successfully address a broad range of symptoms observed in patients with AD and SZ.

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The cholinergic hypothesis of geriatric memory dysfunction.

          Biochemical, electrophysiological, and pharmacological evidence supporting a role for cholinergic dysfunction in age-related memory disturbances is critically reviewed. An attempt has been made to identify pseudoissues, resolve certain controversies, and clarify misconceptions that have occurred in the literature. Significant cholinergic dysfunctions occur in the aged and demented central nervous system, relationships between these changes and loss of memory exist, similar memory deficits can be artificially induced by blocking cholinergic mechanisms in young subjects, and under certain tightly controlled conditions reliable memory improvements in aged subjects can be achieved after cholinergic stimulation. Conventional attempts to reduce memory impairments in clinical trials hav not been therapeutically successful, however. Possible explanations for these disappointments are given and directions for future laboratory and clinical studies are suggested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interneuron dysfunction in psychiatric disorders.

            Schizophrenia, autism and intellectual disabilities are best understood as spectrums of diseases that have broad sets of causes. However, it is becoming evident that these conditions also have overlapping phenotypes and genetics, which is suggestive of common deficits. In this context, the idea that the disruption of inhibitory circuits might be responsible for some of the clinical features of these disorders is gaining support. Recent studies in animal models demonstrate that the molecular basis of such disruption is linked to specific defects in the development and function of interneurons - the cells that are responsible for establishing inhibitory circuits in the brain. These insights are leading to a better understanding of the causes of schizophrenia, autism and intellectual disabilities, and may contribute to the development of more-effective therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cholinesterase inhibitors for Alzheimer's disease.

              Since the introduction of the first cholinesterase inhibitor (ChEI) in 1997, most clinicians and probably most patients would consider the cholinergic drugs, donepezil, galantamine and rivastigmine, to be the first line pharmacotherapy for mild to moderate Alzheimer's disease.The drugs have slightly different pharmacological properties, but they all work by inhibiting the breakdown of acetylcholine, an important neurotransmitter associated with memory, by blocking the enzyme acetylcholinesterase. The most that these drugs could achieve is to modify the manifestations of Alzheimer's disease. Cochrane reviews of each ChEI for Alzheimer's disease have been completed (Birks 2005, Birks 2005b and Loy 2005). Despite the evidence from the clinical studies and the intervening clinical experience the debate on whether ChEIs are effective continues. To assess the effects of donepezil, galantamine and rivastigmine in people with mild, moderate or severe dementia due to Alzheimer's disease. The Cochrane Dementia and Cognitive Improvement Group's Specialized Register was searched using the terms 'donepezil', 'E2020' , 'Aricept' , galanthamin* galantamin* reminyl, rivastigmine, exelon, "ENA 713" and ENA-713 on 12 June 2005. This Register contains up-to-date records of all major health care databases and many ongoing trial databases. All unconfounded, blinded, randomized trials in which treatment with a ChEI was compared with placebo or another ChEI for patients with mild, moderate or severe dementia due to Alzheimer's disease. Data were extracted by one reviewer (JSB), pooled where appropriate and possible, and the pooled treatment effects, or the risks and benefits of treatment estimated. The results of 13 randomized, double blind, placebo controlled trials demonstrate that treatment for periods of 6 months and one year, with donepezil, galantamine or rivastigmine at the recommended dose for people with mild, moderate or severe dementia due to Alzheimer's disease produced improvements in cognitive function, on average -2.7 points (95%CI -3.0 to -2.3), in the midrange of the 70 point ADAS-Cog Scale. Study clinicians blind to other measures rated global clinical state more positively in treated patients. Benefits of treatment were also seen on measures of activities of daily living and behaviour. None of these treatment effects are large. There is nothing to suggest the effects are less for patients with severe dementia or mild dementia, although there is very little evidence for other than mild to moderate dementia.More patients leave ChEI treatment groups, approximately 29 %, on account of adverse events than leave the placebo groups (18%). There is evidence of more adverse events in total in the patients treated with a ChEI than with placebo. Although many types of adverse event were reported, nausea, vomiting, diarrhoea, were significantly more frequent in the ChEI groups than in placebo. There are four studies, all supported by one of the pharmaceutical companies, in which two ChEIs were compared, two studies of donepezil compared with galantamine, and two of donepezil compared with rivastigmine. In three studies the patients were not blinded to treatment, only the fourth, DON vs RIV/Bullock is double blind. Two of the studies provide little evidence, they are of 12 weeks duration, which is barely long enough to complete the drug titration. There is no evidence from DON vs GAL/Wilcock of a treatment difference between donepezil and galantamine at 52 weeks for cognition, activities of daily living, the numbers who leave the trial before the end of treatment, the number who suffer any adverse event, or any specific adverse event. There is no evidence from DON vs RIV/Bullock of a difference between donepezil and rivastigmine for cognitive function, activities of daily living and behavioural disturbance at two years. Fewer patients suffer adverse events on donepezil than rivastigmine. The three cholinesterase inhibitors are efficacious for mild to moderate Alzheimer's disease. It is not possible to identify those who will respond to treatment prior to treatment. There is no evidence that treatment with a ChEI is not cost effective. Despite the slight variations in the mode of action of the three cholinesterase inhibitors there is no evidence of any differences between them with respect to efficacy. There appears to be less adverse effects associated with donepezil compared with rivastigmine. It may be that galantamine and rivastigmine match donepezil in tolerability if a careful and gradual titration routine over more than three months is used. Titration with donepezil is more straightforward and the lower dose may be worth consideration.
                Bookmark

                Author and article information

                Journal
                Neuropsychiatr Dis Treat
                Neuropsychiatr Dis Treat
                Neuropsychiatric Disease and Treatment
                Neuropsychiatric Disease and Treatment
                Dove Medical Press
                1176-6328
                1178-2021
                2014
                28 January 2014
                : 10
                : 183-191
                Affiliations
                Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
                Author notes
                Correspondence: Jerri M Rook, Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 1215 Light Hall, 2215-B Garland Avenue, Nashville, TN 37232, USA, Tel +1 615 322 6730, Fax +1 615 343 3088, Email jerri.m.rook@ 123456vanderbilt.edu
                Article
                ndt-10-183
                10.2147/NDT.S55104
                3913542
                24511233
                ccd5c5c8-dac5-4074-8361-2a8ab34086ce
                © 2014 Foster et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Neurology
                muscarinic receptors,schizophrenia,alzheimer’s disease
                Neurology
                muscarinic receptors, schizophrenia, alzheimer’s disease

                Comments

                Comment on this article