15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      3D tumour models: novel in vitro approaches to cancer studies

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D in vitro models have been used in cancer research as a compromise between 2-dimensional cultures of isolated cancer cells and the manufactured complexity of xenografts of human cancers in immunocompromised animal hosts. 3D models can be tailored to be biomimetic and accurately recapitulate the native in vivo scenario in which they are found. These 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Approaches to create more biomimetic 3D models of cancer include, but are not limited to, (i) providing the appropriate matrix components in a 3D configuration found in vivo, (ii) co-culturing cancer cells, endothelial cells and other associated cells in a spatially relevant manner, (iii) monitoring and controlling hypoxia- to mimic levels found in native tumours and (iv) monitoring the release of angiogenic factors by cancer cells in response to hypoxia. This article aims to overview current 3D in vitro models of cancer and review strategies employed by researchers to tackle these aspects with special reference to recent promising developments, as well as the current limitations of 2D cultures and in vivo models. 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Here we review current strategies in the field of modelling cancer, with special reference to advances in complex 3D in vitro models.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia--a key regulatory factor in tumour growth.

            Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death. Cancer cells have adapted these pathways, allowing tumours to survive and even grow under hypoxic conditions, and tumour hypoxia is associated with poor prognosis and resistance to radiation therapy. Many elements of the hypoxia-response pathway are therefore good candidates for therapeutic targeting.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Tumour-educated macrophages promote tumour progression and metastasis.

                Bookmark

                Author and article information

                Journal
                Journal of Cell Communication and Signaling
                J. Cell Commun. Signal.
                Springer Science and Business Media LLC
                1873-9601
                1873-961X
                August 2011
                April 16 2011
                August 2011
                : 5
                : 3
                : 239-248
                Article
                10.1007/s12079-011-0132-4
                3145874
                21499821
                ccde25a1-a0d0-4515-90ad-671c40c69c7d
                © 2011

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article