2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Twenty-five years of Genomes OnLine Database (GOLD): data updates and new features in v.9

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Genomes OnLine Database (GOLD) (https://gold.jgi.doe.gov/) at the Department of Energy Joint Genome Institute (DOE-JGI) continues to maintain its role as one of the flagship genomic metadata repositories of the world. The ever-increasing number of projects and metadata are freely available to the user community world-wide. GOLD’s metadata is consumed by scientists and remains an important source for large-scale comparative genomics analysis initiatives. Encouraged by this active user engagement and growth, GOLD has continued to add new components and capabilities. The new features such as a public Application Programming Interface (API) and Ecosystem landing page as well as the growth of different entities in this current GOLD v.9 edition are described in detail in this manuscript.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The FAIR Guiding Principles for scientific data management and stewardship

          There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A communal catalogue reveals Earth’s multiscale microbial diversity

            Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity. Supplementary information The online version of this article (doi:10.1038/nature24621) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

              We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nucleic Acids Research
                Oxford University Press (OUP)
                0305-1048
                1362-4962
                January 06 2023
                January 06 2023
                November 01 2022
                January 06 2023
                January 06 2023
                November 01 2022
                : 51
                : D1
                : D957-D963
                Article
                10.1093/nar/gkac974
                36318257
                cceea2e5-a523-4b9a-8d42-b7b6007591a4
                © 2022
                History

                Comments

                Comment on this article