64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion.

          Author Summary

          Malaria infection begins with the bite of an infected mosquito which inoculates sporozoites into the skin. Sporozoites then go to the liver where they invade hepatocytes and replicate, ultimately leading to the blood stage of infection. Sporozoites are motile and actively invade hepatocytes using a unique form of motility called gliding motility. The mechanism by which the parasite moves forward is somewhat similar to a treadmill and the sporozoite protein TRAP, is key to this process. Its extracellular portion binds to host proteins while its intracellular portion binds to the parasite's motor. As the motor moves the protein rearwards, the sporozoite moves forward. It follows that the extracellular adhesive interactions of TRAP must ultimately be disengaged for forward movement to occur. We have generated mutant sporozoites that can only partially disengage these parasite-host adhesive interactions and find that these sporozoites have a halting, constipated movement. Following this, we generated a mutant that cannot disengage these interactions at all and these sporozoites are nonmotile and noninfectious. Lastly we found that a parasite rhomboid protease, ROM4, is on the surface of the sporozoite and thus may be responsible for TRAP cleavage and shedding from the sporozoite surface. Overall, our results demonstrate that robust gliding motility requires the disengagement of adhesive interactions.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery of gene function by expression profiling of the malaria parasite life cycle.

          The completion of the genome sequence for Plasmodium falciparum, the species responsible for most malaria human deaths, has the potential to reveal hundreds of new drug targets and proteins involved in pathogenesis. However, only approximately 35% of the genes code for proteins with an identifiable function. The absence of routine genetic tools for studying Plasmodium parasites suggests that this number is unlikely to change quickly if conventional serial methods are used to characterize encoded proteins. Here, we use a high-density oligonucleotide array to generate expression profiles of human and mosquito stages of the malaria parasite's life cycle. Genes with highly correlated levels and temporal patterns of expression were often involved in similar functions or cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High efficiency transfection of Plasmodium berghei facilitates novel selection procedures.

            The use of transfection in the study of the biology of malaria parasites has been limited due to poor transfection efficiencies (frequency of 10(-6) to 10(-9)) and a paucity of selection markers. Here, a new method of transfection, using non-viral Nucleofector technology, is described for the rodent parasite Plasmodium berghei. The transfection efficiency obtained (episomal and targeted integration into the genome) is in the range of 10(-2) to 10(-3). Such high transfection efficiency strongly reduces the time, number of laboratory animals and amount of materials required to generate transfected parasites. Moreover, it allows different experimental strategies for reverse genetics to be developed and we demonstrate direct selection of stably and non-reversibly transformed, fluorescent protein (FP)-expressing parasites using FACS. Since there is no need to use a drug-selectable marker, this method increases the (low) number of selectable markers available for transformation of P. berghei and can in principle be extended to utilise additional FP. Furthermore the FACS-selected, FP-expressing parasites may serve as easily visualized reference lines that may still be genetically manipulated with the existing drug-selectable markers. The combination of enhanced transfection efficiency and a versatile rodent model provides a basis for the further development of novel tools for high throughput genome manipulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites.

              Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By gene targeting in a rodent Plasmodium, we demonstrate that TRAP is critical for sporozoite infection of the mosquito salivary glands and the rat liver, and is essential for sporozoite gliding motility in vitro. This suggests that in Plasmodium sporozoites, and likely in other Apicomplexa, gliding locomotion and cell invasion have a common molecular basis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2012
                July 2012
                26 July 2012
                : 8
                : 7
                : e1002725
                Affiliations
                [1 ]Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
                [2 ]Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
                [3 ]Department of Microbiology, School of Medicine, University of Geneva, Geneva, Switzerland
                Faculdade de Medicina da Universidade de Lisboa, Portugal
                Author notes

                ¤: Current address: Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America

                Conceived and designed the experiments: PS IE DSF. Performed the experiments: IE DRTR AC PP BLB. Analyzed the data: IE PS DRTR PP DSF. Contributed reagents/materials/analysis tools: IE PS PP DSF. Wrote the paper: IE PS.

                Article
                PPATHOGENS-D-11-01012
                10.1371/journal.ppat.1002725
                3406075
                22911675
                cda01616-0d7a-4011-b921-2c330a42627f
                Ejigiri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 May 2011
                : 14 April 2012
                Page count
                Pages: 17
                Categories
                Research Article
                Biology
                Biophysics
                Cell Motility
                Medicine
                Infectious Diseases
                Parasitic Diseases
                Malaria

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article