7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Impact of Siderophore Production on Pseudomonas aeruginosa Infections in Immunosuppressed Mice

      1 , 1 , 1 , 1
      Infection and Immunity
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Pseudomonas aeruginosa produces siderophores, pyoverdin and pyochelin, for high-affinity iron uptake. To investigate their contribution to P. aeruginosa infections, we constructed allelic exchange mutants from strain PAO1 which were deficient in producing one or both of the siderophores. When inoculated into the calf muscles of immunosuppressed mice, pyochelin-deficient and pyoverdin-deficient mutants grew and killed the animals as efficiently as PAO1. In contrast, the pyochelin- and pyoverdin-deficient (double) mutant did not show lethal virulence, although it did infect the muscles. On the other hand, when inoculated intranasally, all mutants grew in the lungs and killed immunosuppressed mice. Compared with PAO1, however, the pyoverdin-deficient mutant and the double mutant grew poorly in the lungs, and the latter was significantly attenuated for virulence. Irrespective of the inoculation route, the pyoverdin-deficient and doubly deficient mutants detected in the blood were significantly less numerous than PAO1. Additionally, in vitro examination demonstrated that the growth of the double mutant was extremely reduced under a free-iron-restricted condition with apotransferrin but that the growth reduction was completely canceled by supplementation with hemoglobin as a heme source. These results suggest that both pyoverdin and pyochelin are required for efficient bacterial growth and full expression of virulence in P. aeruginosa infection, although pyoverdin may be comparatively more important for bacterial growth and dissemination. However, the siderophores were not always required for infection. It is possible that non-siderophore-mediated iron acquisition, such as via heme uptake, might also play an important role in P. aeruginosa infections.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

          Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Fluorescent Pigment of Pseudomonas fluorescens: Biosynthesis, Purification and Physicochemical Properties

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pyoverdin is essential for virulence of Pseudomonas aeruginosa.

              The role of pyoverdin, the main siderophore in iron-gathering capacity produced by Pseudomonas aeruginosa, in bacterial growth in vivo is controversial, although iron is important for virulence. To determine the ability of pyoverdin to compete for iron with the human iron-binding protein transferrin, wild-type P. aeruginosa ATCC 15692 (PAO1 strain) and PAO pyoverdin-deficient mutants were grown at 37 degrees C in bicarbonate-containing succinate medium to which apotransferrin had been added. Growth of the pyoverdin-deficient mutants was fully inhibited compared with that of the wild type but was restored when pyoverdin was added to the medium. Moreover, when growth took place at a temperature at which no pyoverdin production occurred (43 degrees C), the wild-type PAO1 strain behaved the same as the pyoverdin-deficient mutants, with growth inhibited by apotransferrin in the presence of bicarbonate and restored by pyoverdin supplementation. Growth inhibition was never observed in bicarbonate-free succinate medium, whatever the strain and the temperature for growth. In vivo, in contrast to results obtained with the wild-type strain, pyoverdin-deficient mutants demonstrated no virulence when injected at 10(2) CFU into burned mice. However, virulence was restored when purified pyoverdin originating from the wild-type strain was supplemented during the infection. These results strongly suggest that pyoverdin competes directly with transferrin for iron and that it is an essential element for in vivo iron gathering and virulence expression in P. aeruginosa. Rapid removal of iron from [59Fe]ferritransferrin by pyoverdin in vitro supports this view.
                Bookmark

                Author and article information

                Journal
                Infection and Immunity
                Infect Immun
                American Society for Microbiology
                0019-9567
                1098-5522
                April 2000
                April 2000
                : 68
                : 4
                : 1834-1839
                Affiliations
                [1 ]<!--label omitted: 1-->New Product Research Laboratories I, Daiichi Pharmaceutical Co., Ltd., Tokyo 134-8630, Japan
                Article
                10.1128/IAI.68.4.1834-1839.2000
                97355
                10722571
                cdbde57d-5424-4735-809b-5f01b9e45847
                © 2000

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article