22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineering of Neutrophil Membrane Camouflaging Nanoparticles Realizes Targeted Drug Delivery for Amplified Antitumor Therapy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Although the neutrophil membrane (NM)-based nanoparticulate delivery system has exhibited rapid advances in tumor targeting stemmed from the inherited instinct, the antitumor effect requires further improvement due to inefficient cellular internalization in the absence of specific interactions between NM-coated nanoparticles and tumor cells.

          Methods

          Herein, we fabricated drug-paclitaxel loaded NM camouflaging nanoparticles (TNM-PN) modified with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), favorable for the cellular internalization.

          Results

          The results showed that TNM-PN exerted a significant cytotoxicity to tumor cells by TRAIL-mediated endocytosis and strong adhesion to inflamed endothelial cells in vitro. Due to TRAIL modification as well as the adhesive interactions between neutrophil and inflamed tumor vascular endothelial cells, tumors in TNM-PN group exhibited almost 2-fold higher fluorescence intensities than that of NM camouflaging nanoparticles and 3-fold higher than that of bare nanoparticles, respectively. Significant tumor inhibition and survival rates of mice were achieved in TNM-PN group as a consequence of prolonged blood circulations to 48 h and preferential tumor accumulations, which was ascribed to targeting adhesion originated from NM to immune evasion and subsequent excellent cellular internalization.

          Conclusion

          The research unveiled a novel strategy of amplifying cellular internalization based on NM coating nanotechnology to boost antitumor efficacy.

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of nanoparticle design for overcoming biological barriers to drug delivery.

          Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Progress and challenges towards targeted delivery of cancer therapeutics

            Targeted delivery approaches for cancer therapeutics have shown a steep rise over the past few decades. However, compared to the plethora of successful pre-clinical studies, only 15 passively targeted nanocarriers (NCs) have been approved for clinical use and none of the actively targeted NCs have advanced past clinical trials. Herein, we review the principles behind targeted delivery approaches to determine potential reasons for their limited clinical translation and success. We propose criteria and considerations that must be taken into account for the development of novel actively targeted NCs. We also highlight the possible directions for the development of successful tumor targeting strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PLGA-based nanoparticles: an overview of biomedical applications.

              Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers. Among the different polymers developed to formulate polymeric nanoparticles, PLGA has attracted considerable attention due to its attractive properties: (i) biodegradability and biocompatibility, (ii) FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, (iii) well described formulations and methods of production adapted to various types of drugs e.g. hydrophilic or hydrophobic small molecules or macromolecules, (iv) protection of drug from degradation, (v) possibility of sustained release, (vi) possibility to modify surface properties to provide stealthness and/or better interaction with biological materials and (vii) possibility to target nanoparticles to specific organs or cells. This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases. This review focuses on the understanding of specific characteristics exploited by PLGA-based nanoparticles to target a specific organ or tissue or specific cells. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                15 February 2021
                2021
                : 16
                : 1175-1187
                Affiliations
                [1 ]Obstetrics and Gynecology Department, Tongji Hospital of Tongji University , Shanghai, People’s Republic of China
                [2 ]Cancer Center, Shanghai East Hospital of Tongji University , Shanghai, People’s Republic of China
                Author notes
                Correspondence: Kun Wang Jimo Road 150, Pudong New District, Shanghai, People’s Republic of China Email 001wangkun@tongji.edu.cn
                Xiaowen Tong Xincun Road 389, Putuo District, Shanghai, People’s Republic of China Email Xiaowen_tong@hotmail.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0001-6483-4299
                http://orcid.org/0000-0002-6626-8312
                Article
                288636
                10.2147/IJN.S288636
                7894798
                cde7402a-4edd-421f-9061-4c27d8edcda8
                © 2021 Wang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 29 October 2020
                : 23 January 2021
                Page count
                Figures: 8, References: 32, Pages: 13
                Categories
                Original Research

                Molecular medicine
                neutrophil membrane camouflaging,nanoparticulate delivery,tumor targeting,cellular internalization,antitumor therapy

                Comments

                Comment on this article