Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Non-coding RNAs in Heat Stress Responses of Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.

            MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance.

              MicroRNAs (miRNAs) are a class of regulatory RNAs of approximately 21 nucleotides that posttranscriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. miR398 targets two closely related Cu/Zn superoxide dismutases (cytosolic CSD1 and chloroplastic CSD2) that can detoxify superoxide radicals. CSD1 and CSD2 transcripts are induced in response to oxidative stress, but the regulatory mechanism of the induction is unknown. Here, we show that miR398 expression is downregulated transcriptionally by oxidative stresses, and this downregulation is important for posttranscriptional CSD1 and CSD2 mRNA accumulation and oxidative stress tolerance. We also provide evidence for an important role of miR398 in specifying the spatial and temporal expression patterns of CSD1 and CSD2 mRNAs. Our results suggest that CSD1 and CSD2 expression is fine-tuned by miR398-directed mRNA cleavage. Additionally, we show that transgenic Arabidopsis thaliana plants overexpressing a miR398-resistant form of CSD2 accumulate more CSD2 mRNA than plants overexpressing a regular CSD2 and are consequently much more tolerant to high light, heavy metals, and other oxidative stresses. Thus, relieving miR398-guided suppression of CSD2 in transgenic plants is an effective new approach to improving plant productivity under oxidative stress conditions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 August 2016
                2016
                : 7
                : 1213
                Affiliations
                [1] 1College of Horticulture and Plant Protection, Yangzhou University Yangzhou, China
                [2] 2College of Bio-Science and Bio-Technology, Yangzhou University Yangzhou, China
                [3] 3Key Laboratory of Crop Genetics and Physiology of Jiangsu Province Yangzhou, China
                Author notes

                Edited by: Paula Casati, National Scientific and Technical Research Council, Argentina

                Reviewed by: Elina Welchen, National University of the Littoral, Argentina; Yingfeng Luo, Chinese Academy of Sciences, China

                *Correspondence: Biao Jin bjin@ 123456yzu.edu.cn

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2016.01213
                4988968
                27588021
                cdf91f76-f753-4a24-aeea-65992f8927e9
                Copyright © 2016 Zhao, He, Chen, Wang and Jin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 June 2016
                : 29 July 2016
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 75, Pages: 9, Words: 6780
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 30870436
                Categories
                Plant Science
                Mini Review

                Plant science & Botany
                ncrna,heat stress,mirna,sirna,lncrna
                Plant science & Botany
                ncrna, heat stress, mirna, sirna, lncrna

                Comments

                Comment on this article