43
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alendronate Sodium in the Management of Osteoporosis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alendronate is one of the best and most extensively studied bisphosphonates in the treatment of osteoporosis. This review considers in detail the major pivotal study, the fracture intervention trial (FIT), upon which the use of alendronate is based and which was a landmark study in terms of design, size and clinical impact. The role of alendronate has subsequently been underscored by a range of studies extending the clinical indications for its use and consolidating the effect on reducing both vertebral and non-vertebral fracture risk. Although the emphasis of these studies has predominantly been on the management of postmenopausal osteoporosis, data is also available in primary prevention, men, and glucocorticoids-induced osteoporosis. Direct comparison between the different drugs used to treat osteoporosis with fracture end points are needed for patients and doctors to make informed choices, but the size of such studies are prohibitive. Clinical trials using surrogate markers such as bone mineral density and biochemical markers of bone turnover have been performed which provide some helpful information but the limitations of this approach need to be recognized.

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.

          Once-daily injections of parathyroid hormone or its amino-terminal fragments increase bone formation and bone mass without causing hypercalcemia, but their effects on fractures are unknown. We randomly assigned 1637 postmenopausal women with prior vertebral fractures to receive 20 or 40 microg of parathyroid hormone (1-34) or placebo, administered subcutaneously by the women daily. We obtained vertebral radiographs at base line and at the end of the study (median duration of observation, 21 months) and performed serial measurements of bone mass by dual-energy x-ray absorptiometry. New vertebral fractures occurred in 14 percent of the women in the placebo group and in 5 percent and 4 percent, respectively, of the women in the 20-microg and 40-microg parathyroid hormone groups; the respective relative risks of fracture in the 20-microg and 40-microg groups, as compared with the placebo group, were 0.35 and 0.31 (95 percent confidence intervals, 0.22 to 0.55 and 0.19 to 0.50). New nonvertebral fragility fractures occurred in 6 percent of the women in the placebo group and in 3 percent of those in each parathyroid hormone group (relative risk, 0.47 and 0.46, respectively [95 percent confidence intervals, 0.25 to 0.88 and 0.25 to 0.861). As compared with placebo, the 20-microg and 40-microg doses of parathyroid hormone increased bone mineral density by 9 and 13 more percentage points in the lumbar spine and by 3 and 6 more percentage points in the femoral neck; the 40-microg dose decreased bone mineral density at the shaft of the radius by 2 more percentage points. Both doses increased total-body bone mineral by 2 to 4 more percentage points than did placebo. Parathyroid hormone had only minor side effects (occasional nausea and headache). Treatment of postmenopausal osteoporosis with parathyroid hormone (1-34) decreases the risk of vertebral and nonvertebral fractures; increases vertebral, femoral, and total-body bone mineral density; and is well tolerated. The 40-microg dose increased bone mineral density more than the 20-microg dose but had similar effects on the risk of fracture and was more likely to have side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis.

            Numerous studies have reported increased risks of hip, spine, and other fractures among people who had previous clinically diagnosed fractures, or who have radiographic evidence of vertebral fractures. However, there is some variability in the magnitudes of associations among studies. We summarized the literature and performed a statistical synthesis of the risk of future fracture, given a history of prior fracture. The strongest associations were observed between prior and subsequent vertebral fractures; women with preexisting vertebral fractures (identified at baseline by vertebral morphometry) had approximately 4 times greater risk of subsequent vertebral fractures than those without prior fractures. This risk increases with the number of prior vertebral fractures. Most studies reported relative risks of approximately 2 for other combinations of prior and future fracture sites (hip, spine, wrist, or any site). The confidence profile method was used to derive a single pooled estimate from the studies that provided sufficient data for other combinations of prior and subsequent fracture sites. Studies of peri- and postmenopausal women with prior fractures had 2.0 (95 % CI = 1.8, 2.1) times the risk of subsequent fracture compared with women without prior fractures. For other studies (including men and women of all ages), the risk was increased by 2.2 (1.9, 2.6) times. We conclude that history of prior fracture at any site is an important risk factor for future fractures. Patients with a history of prior fracture, therefore, should receive further evaluation for osteoporosis and fracture risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Severely suppressed bone turnover: a potential complication of alendronate therapy.

              Alendronate, an inhibitor of bone resorption, is widely used in osteoporosis treatment. However, concerns have been raised about potential oversuppression of bone turnover during long-term use. We report on nine patients who sustained spontaneous nonspinal fractures while on alendronate therapy, six of whom displayed either delayed or absent fracture healing for 3 months to 2 yr during therapy. Histomorphometric analysis of the cancellous bone showed markedly suppressed bone formation, with reduced or absent osteoblastic surface in most patients. Osteoclastic surface was low or low-normal in eight patients, and eroded surface was decreased in four. Matrix synthesis was markedly diminished, with absence of double-tetracycline label and absent or reduced single-tetracycline label in all patients. The same trend was seen in the intracortical and endocortical surfaces. Our findings raise the possibility that severe suppression of bone turnover may develop during long-term alendronate therapy, resulting in increased susceptibility to, and delayed healing of, nonspinal fractures. Although coadministration of estrogen or glucocorticoids appears to be a predisposing factor, this apparent complication can also occur with monotherapy. Our observations emphasize the need for increased awareness and monitoring for the potential development of excessive suppression of bone turnover during long-term alendronate therapy.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                September 2006
                September 2006
                : 2
                : 3
                : 235-249
                Affiliations
                [1 ]Dept of Clinical Chemistry, City Hospital Nottingham, UK
                [2 ]Dept Endocrinology and Diabetes, City Hospital Nottingham, UK
                Author notes
                Correspondence: DJ Hosking, Dept Endocrinology and Diabetes, City Hospital, Hucknall Road, Nottingham NG5 1PB, UK Tel +44 115 969 1169 Ext 46395 Fax +44 115 962 7959 Email: dhosking@ 123456ncht.trent.nhs.uk
                Article
                10.2147/tcrm.2006.2.3.235
                1936260
                18360599
                ce3c09f1-45ae-42aa-9e5f-c2d6721ee180
                © 2006 Dove Medical Press Limited. All rights reserved
                History
                Categories
                Review

                Medicine
                osteoporosis,alendronate,hormone replacement therapy,corticosteroid-induced osteoporosis,male osteoporosis,parathyroid hormone

                Comments

                Comment on this article