11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Physical origin of inertness of Ta contacts on Bi2Te3

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Topological Insulators

            , (2011)
            Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complex thermoelectric materials.

              Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Physics
                Journal of Applied Physics
                AIP Publishing
                0021-8979
                1089-7550
                November 14 2018
                November 14 2018
                : 124
                : 18
                : 185106
                Affiliations
                [1 ]Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen, Germany
                Article
                10.1063/1.5050558
                ce5561aa-d187-4076-b039-420923c2c85f
                © 2018
                History

                Comments

                Comment on this article