Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Levels of intra-host and temporal sequence variation in a large CO1 sub-units from Anisakis simplex sensu stricto (Rudolphi 1809) (Nematoda: Anisakisdae): implications for fisheries management

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Book: not found

          Nematode parasites of vertebrates: their development and transmission.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer.

            DNA sequence divergence at internal transcribed spacer regions (ITS-1 and ITS-2) was compared with divergence at mitochondrial cox1 or nad4 loci in pairs of congeneric nematode species. Mitochondrial sequences accumulate substitutions much more quickly than internal transcribed spacer, the difference being most striking in the most closely related species pairs. Thus, mitochondrial DNA may be the best choice for applications in which one is using sequence data on small numbers of individuals to search for potential cryptic species. On the other hand, internal transcribed spacer remains an excellent tool for DNA diagnostics (quickly distinguishing between known species) owing to its lower level of intraspecific polymorphism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism.

              Polymerase-chain-reaction-based restriction fragment length polymorphism analysis was performed to establish genetic markers in rDNA, for the identification of the three sibling species of the Anisakis simplex complex and morphologically differentiated Anisakis species, i.e. Anisakis physeteris, Anisakis schupakovi, Anisakis typica and Anisakis ziphidarum. Different restriction patterns were found between A. simplex sensu stricto and Anisakis pegreffii with two of the restriction endonucleases used (HinfI and TaqI), between A. simplex sensu stricto and A. simplex C with one endonuclease (HhaI), and between A. simplex C and Aniskis pegreffii with three endonucleases (HhaI, HinfI and TaqI), while no variation in patterns was detected among individuals within each species. The species A. physeteris, A. schupakovi, A. typica and A. ziphidarum were found to be different from each other and different from the three sibling species of the A. simplex complex by distinct fragments using 10-12 of the endonucleases tested. The polymorphisms obtained by restriction fragment length polymorphisms have provided a new set of genetic markers for the accurate identification of sibling species and morphospecies.
                Bookmark

                Author and article information

                Journal
                Marine Biology
                Mar Biol
                Springer Nature
                0025-3162
                1432-1793
                April 2007
                October 28 2006
                April 2007
                : 151
                : 2
                : 695-702
                Article
                10.1007/s00227-006-0509-8
                cec4650b-e9e4-4353-b61d-da88f3fc13ee
                © 2007

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article