0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SPME-GC-MS and FTIR-ATR Spectroscopic Study as a Tool for Unifloral Common Greek Honeys’ Botanical Origin Identification

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among the variants of Greek honey, the most commonly available are pine, fir, thyme, and citrus honey. Samples of the above kinds of honey, identified according to European and Greek legislation, were studied using gas chromatography coupled with mass spectrometry (GC-MS) and the attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic techniques. Two chemometric models were developed based on statistically significant volatile compounds (octane; 2-phenylacetaldehyde; 1-nonanol; methyl 2-hydroxybenzoate; 2-(4-methylcyclohex-3-en-1-yl); nonanoic acid) and the 1390–945 and 847–803 cm−1 spectral regions, mainly vibrations of fructose and glucose, combined with the stepwise linear discriminant analysis (stepwise LDA) statistical technique. In total, 85.5% of standard samples, and 82.3% through internal validation and 88.5% through external validation, were identified correctly using the GC-MS-stepwise-LDA chemometric model. The corresponding results for the ATR-FTIR-stepwise-LDA chemometric model were 93.5%, 82.5%, and 84.6%. The double validation (internal, external) enhances the robustness of the proposed chemometric models. The developed models are considered statistically equivalent, but FTIR spectroscopy is simple, rapid, and more economical.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Methods of Melissopalynology

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Application of FTIR-ATR spectroscopy to the quantification of sugar in honey.

            A Fourier transform infrared spectroscopic method with attenuated total reflectance (FTIR-ATR) and partial least squares (PLS) regression model for the prediction of sugar content in honey samples was calculated. Standards of trehalose, glucose, fructose, sucrose, melezitose, turanose and maltose were used to identify and quantify the individual sugar components in 63 honey samples by HPAEC-IPAD. Fructose and glucose are the highest sugars in honey with an average value of 36% and 26%, respectively. The 1stDer spectra with MSC or SLS in the wave number range from 1500 to 750cm(-1) provide the best calibration model with a r(2) of 86.60 and 86.01 with RPD of 2.6 and 2.55, respectively for fructose and glucose. For turanose and melezitose good models were also found. The FTIR-ATR showed to be a good methodology to quantify the main sugar content in honey and easily adapted to routine analysis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                April 2021
                April 01 2021
                : 11
                : 7
                : 3159
                Article
                10.3390/app11073159
                cecc175a-d3e1-42dc-9043-d0084d30e711
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article