32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cytokinins (CKs) are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship with the purine salvage pathway, and other phytohormones. The most widely used approach to query unknown facets of CK biology utilized functional genomics coupled with CK metabolite assays and screening of CK associated phenotypes. There are numerous different types of assays for determining CK quantity, however, none of these methods screen for the compendium of metabolites that are necessary for elucidating all roles, including purine salvage pathway enzymes in CK metabolism, and CK cross-talk with other phytohormones. Furthermore, all published analytical methods have drawbacks ranging from the required use of radiolabelled compounds, or hazardous derivatization reagents, poor sensitivity, lack of resolution between CK isomers and lengthy run times.

          Results

          In this paper, a method is described for the concurrent extraction, purification and analysis of several CKs (freebases, ribosides, glucosides, nucleotides), purines (adenosine monophosphate, inosine, adenosine, and adenine), indole-3-acetic acid, and abscisic acid from hundred-milligram (mg) quantities of Arabidopsis thaliana leaf tissue. This method utilizes conventional Bieleski solvents extraction, solid phase purification, and is unique because of its diverse range of detectable analytes, and implementation of a conventional HPLC system with a fused core column that enables good sensitivity without the requirement of a UHPLC system. Using this method we were able to resolve CKs about twice as fast as our previous method. Similarly, analysis of adenosine, indole-3-acetic acid, and abscisic acid, was comparatively rapid. A further enhancement of the method was the utilization of a QTRAP 5500 mass analyzer, which improved upon several aspects of our previous analytical method carried out on a Quattro mass analyzer. Notable improvements included much superior sensitivity, and number of analytes detectable within a single run. Limits of detection ranged from 2 pM for (9G)Z to almost 750 pM for indole-3-acetic acid.

          Conclusions

          This method is well suited for functional genomics platforms tailored to understanding CK metabolism, CK interrelationships with purine recycling and associated hormonal cross-talk.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Leaf senescence.

          Leaf senescence constitutes the final stage of leaf development and is critical for plants' fitness as nutrient relocation from leaves to reproducing seeds is achieved through this process. Leaf senescence involves a coordinated action at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. Major breakthroughs in the molecular understanding of leaf senescence were achieved through characterization of various senescence mutants and senescence-associated genes, which revealed the nature of regulatory factors and a highly complex molecular regulatory network underlying leaf senescence. The genetically identified regulatory factors include transcription regulators, receptors and signaling components for hormones and stress responses, and regulators of metabolism. Key issues still need to be elucidated, including cellular-level analysis of senescence-associated cell death, the mechanism of coordination among cellular-, organ-, and organism-level senescence, the integration mechanism of various senescence-affecting signals, and the nature and control of leaf age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokinins: activity, biosynthesis, and translocation.

            Cytokinins (CKs) play a crucial role in various phases of plant growth and development, but the basic molecular mechanisms of their biosynthesis and signal transduction only recently became clear. The progress was achieved by identifying a series of key genes encoding enzymes and proteins controlling critical steps in biosynthesis, translocation, and signaling. Basic schemes for CK homeostasis and root/shoot communication at the whole-plant level can now be devised. This review summarizes recent findings on the relationship between CK structural variation and activity, distinct features in CK biosynthesis between higher plants and Agrobacterium infected plants, CK translocation at whole-plant and cellular levels, and CKs as signaling molecules for nutrient status via root-shoot communication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct control of shoot meristem activity by a cytokinin-activating enzyme.

              The growth of plants depends on continuous function of the meristems. Shoot meristems are responsible for all the post-embryonic aerial organs, such as leaves, stems and flowers. It has been assumed that the phytohormone cytokinin has a positive role in shoot meristem function. A severe reduction in the size of meristems in a mutant that is defective in all of its cytokinin receptors has provided compelling evidence that cytokinin is required for meristem activity. Here, we report a novel regulation of meristem activity, which is executed by the meristem-specific activation of cytokinins. The LONELY GUY (LOG) gene of rice is required to maintain meristem activity and its loss of function causes premature termination of the shoot meristem. LOG encodes a novel cytokinin-activating enzyme that works in the final step of bioactive cytokinin synthesis. Revising the long-held idea of multistep reactions, LOG directly converts inactive cytokinin nucleotides to the free-base forms, which are biologically active, by its cytokinin-specific phosphoribohydrolase activity. LOG messenger RNA is specifically localized in shoot meristem tips, indicating the activation of cytokinins in a specific developmental domain. We propose the fine-tuning of concentrations and the spatial distribution of bioactive cytokinins by a cytokinin-activating enzyme as a mechanism that regulates meristem activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Methods
                Plant Methods
                Plant Methods
                BioMed Central
                1746-4811
                2012
                12 October 2012
                : 8
                : 42
                Affiliations
                [1 ]Biology Department, Trent University, Peterborough, ON, K9J 7B8, Canada
                [2 ]Present Address: Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., University of Calgary, Calgary, AB, T2N 1N4, Canada
                Article
                1746-4811-8-42
                10.1186/1746-4811-8-42
                3583190
                23061971
                ced33a84-7985-4837-82c0-ddf571765c8b
                Copyright ©2012 Farrow and Emery; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 June 2012
                : 8 October 2012
                Categories
                Methodology

                Plant science & Botany
                arabidopsis thaliana,hplc-esi-ms-ms,phytohormones,cytokinins,abscisic acid,indole-3-acetic acid,purines

                Comments

                Comment on this article