34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Saccharomyces cerevisiae is the main microorganism responsible for wine alcoholic fermentation. The oenological phenotypes resulting from fermentation, such as the production of acetic acid, glycerol, and residual sugar concentration are regulated by multiple genes and vary quantitatively between different strain backgrounds. With the aim of identifying the quantitative trait loci (QTLs) that regulate oenological phenotypes, we performed linkage analysis using three crosses between highly diverged S. cerevisiae strains. Segregants from each cross were used as starter cultures for 20-day fermentations, in synthetic wine must, to simulate actual winemaking conditions. Linkage analysis on phenotypes of primary industrial importance resulted in the mapping of 18 QTLs. We tested 18 candidate genes, by reciprocal hemizygosity, for their contribution to the observed phenotypic variation, and validated five genes and the chromosome II right subtelomeric region. We observed that genes involved in mitochondrial metabolism, sugar transport, nitrogen metabolism, and the uncharacterized ORF YJR030W explained most of the phenotypic variation in oenological traits. Furthermore, we experimentally validated an exceptionally strong epistatic interaction resulting in high level of succinic acid between the Sake FLX1 allele and the Wine/European MDH2 allele. Overall, our work demonstrates the complex genetic basis underlying wine traits, including natural allelic variation, antagonistic linked QTLs and complex epistatic interactions between alleles from strains with different evolutionary histories.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Population genomics of domestic and wild yeasts

          Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species leading to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to four-fold or more coverage of the genome sequences of over seventy isolates of the baker's yeast, S. cerevisiae, and its closest relative, S. paradoxus. We examine variation in gene content, SNPs, indels, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. Interestingly, S. paradoxus populations are well delineated along geographic boundaries while the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.

            Yeasts are predominant in the ancient and complex process of winemaking. In spontaneous fermentations, there is a progressive growth pattern of indigenous yeasts, with the final stages invariably being dominated by the alcohol-tolerant strains of Saccharomyces cerevisiae. This species is universally known as the 'wine yeast' and is widely preferred for initiating wine fermentations. The primary role of wine yeast is to catalyze the rapid, complete and efficient conversion of grape sugars to ethanol, carbon dioxide and other minor, but important, metabolites without the development of off-flavours. However, due to the demanding nature of modern winemaking practices and sophisticated wine markets, there is an ever-growing quest for specialized wine yeast strains possessing a wide range of optimized, improved or novel oenological properties. This review highlights the wealth of untapped indigenous yeasts with oenological potential, the complexity of wine yeasts' genetic features and the genetic techniques often used in strain development. The current status of genetically improved wine yeasts and potential targets for further strain development are outlined. In light of the limited knowledge of industrial wine yeasts' complex genomes and the daunting challenges to comply with strict statutory regulations and consumer demands regarding the future use of genetically modified strains, this review cautions against unrealistic expectations over the short term. However, the staggering potential advantages of improved wine yeasts to both the winemaker and consumer in the third millennium are pointed out. Copyright 2000 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissecting the architecture of a quantitative trait locus in yeast.

              Most phenotypic diversity in natural populations is characterized by differences in degree rather than in kind. Identification of the actual genes underlying these quantitative traits has proved difficult. As a result, little is known about their genetic architecture. The failures are thought to be due to the different contributions of many underlying genes to the phenotype and the ability of different combinations of genes and environmental factors to produce similar phenotypes. This study combined genome-wide mapping and a new genetic technique named reciprocal-hemizygosity analysis to achieve the complete dissection of a quantitative trait locus (QTL) in Saccharomyces cerevisiae. A QTL architecture was uncovered that was more complex than expected. Functional linkages both in cis and in trans were found between three tightly linked quantitative trait genes that are neither necessary nor sufficient in isolation. This arrangement of alleles explains heterosis (hybrid vigour), the increased fitness of the heterozygote compared with homozygotes. It also demonstrates a deficiency in current approaches to QTL dissection with implications extending to traits in other organisms, including human genetic diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                21 November 2012
                : 7
                : 11
                : e49640
                Affiliations
                [1 ]Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
                [2 ]Institute of Research on Cancer and Ageing of Nice (IRCAN) CNRS UMR 7284 - INSERM U1081, University of Nice Sophia-Antipolis, Nice, France
                [3 ]Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
                [4 ]Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
                [5 ]Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
                Simon Fraser University, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FS FC EJL GL CM. Performed the experiments: FS FC DS VG MAG AB JW. Analyzed the data: FS FC GL. Contributed reagents/materials/analysis tools: FS EJL GL CM. Wrote the paper: FS GL CM.

                Article
                PONE-D-12-14500
                10.1371/journal.pone.0049640
                3504119
                23185390
                cee3ae22-bda0-45fd-9da5-9a2682f0384d
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 May 2012
                : 16 October 2012
                Page count
                Pages: 12
                Funding
                This work was supported by CNRS and ATIP-Avenir, Biological Sciences Research Council (BBF0152161), FONDECYT 1100509, MECESUP UCH 0604, Becas Chile, Apoyo tesis doctoral AT-24100036 and CONICYT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Applied Microbiology
                Genetics
                Heredity
                Complex Traits
                Epistasis
                Genotypes
                Haploinsufficiency
                Heterosis
                Linkage (Genetics)
                Phenotypes
                Quantitative Traits
                Model Organisms
                Yeast and Fungal Models
                Saccharomyces Cerevisiae

                Uncategorized
                Uncategorized

                Comments

                Comment on this article