44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Administration of mesenchymal stem cells (MSCs) has been shown to improve renal function in rodent models of chronic kidney disease (CKD), in part by reducing intrarenal inflammation and suppressing fibrosis. CKD in cats is characterized by tubulointerstitial inflammation and fibrosis, and thus treatment with MSCs might improve renal function and urinary markers of inflammation in this disease. Therefore, a series of pilot studies was conducted to assess the safety and efficacy of intravenous administration of allogeneic adipose-derived MSCs (aMSCs) in cats with naturally occurring CKD.

          Methods

          Cats enrolled in these studies received an intravenous infusion of allogeneic aMSCs every 2 weeks collected from healthy, young, specific pathogen-free cats. Cats in pilot study 1 (six cats) received 2 × 10 6 cryopreserved aMSCs per infusion, cats in pilot study 2 (five cats) received 4 × 10 6 cryopreserved aMSCs per infusion, and cats in pilot study 3 (five cats) received 4 × 10 6 aMSCs cultured from cryopreserved adipose. Serum biochemistry, complete blood count, urinalysis, urine protein, glomerular filtration rate, and urinary cytokine concentrations were monitored during the treatment period. Changes in clinical parameters were compared statistically by means of repeated measures analysis of variance (ANOVA) followed by Bonferroni’s correction.

          Results

          Cats in pilot study 1 had few adverse effects from the aMSC infusions and there was a statistically significant decrease in serum creatinine concentrations during the study period, however the degree of decrease seems unlikely to be clinically relevant. Adverse effects of the aMSC infusion in cats in pilot study 2 included vomiting (2/5 cats) during infusion and increased respiratory rate and effort (4/5 cats). Cats in pilot study 3 did not experience any adverse side effects. Serum creatinine concentrations and glomerular filtration rates did not change significantly in cats in pilot studies 2 and 3.

          Conclusions

          Administration of cryopreserved aMSCs was associated with significant adverse effects and no discernible clinically relevant improvement in renal functional parameters. Administration of aMSCs cultured from cryopreserved adipose was not associated with adverse effects, but was also not associated with improvement in renal functional parameters.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.

          Severe acute renal failure (ARF) remains a common, largely treatment-resistant clinical problem with disturbingly high mortality rates. Therefore, we tested whether administration of multipotent mesenchymal stem cells (MSC) to anesthetized rats with ischemia-reperfusion-induced ARF (40-min bilateral renal pedicle clamping) could improve the outcome through amelioration of inflammatory, vascular, and apoptotic/necrotic manifestations of ischemic kidney injury. Accordingly, intracarotid administration of MSC (approximately 10(6)/animal) either immediately or 24 h after renal ischemia resulted in significantly improved renal function, higher proliferative and lower apoptotic indexes, as well as lower renal injury and unchanged leukocyte infiltration scores. Such renoprotection was not obtained with syngeneic fibroblasts. Using in vivo two-photon laser confocal microscopy, fluorescence-labeled MSC were detected early after injection in glomeruli, and low numbers attached at microvasculature sites. However, within 3 days of administration, none of the administered MSC had differentiated into a tubular or endothelial cell phenotype. At 24 h after injury, expression of proinflammatory cytokines IL-1beta, TNF-alpha, IFN-gamma, and inducible nitric oxide synthase was significantly reduced and that of anti-inflammatory IL-10 and bFGF, TGF-alpha, and Bcl-2 was highly upregulated in treated kidneys. We conclude that the early, highly significant renoprotection obtained with MSC is of considerable therapeutic promise for the cell-based management of clinical ARF. The beneficial effects of MSC are primarily mediated via complex paracrine actions and not by their differentiation into target cells, which, as such, appears to be a more protracted response that may become important in late-stage organ repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C.

            For addressing the influence of muscle mass on serum and urinary creatinine and serum cystatin C, body composition was assessed by skinfold thickness measurement and bioelectrical impedance analyses. A total of 170 healthy individuals (92 women, 78 men) were classified as sedentary or with mild or moderate/intense physical activity. Blood, 24-h urine samples, and 24-h food recall were obtained from all individuals. Serum and urinary creatinine correlated significantly with body weight, but the level of correlation with lean mass was even greater. There was no significant correlation between body weight and lean mass with cystatin C. Individuals with moderate/intense physical activity presented significantly lower mean body mass index (23.1 +/- 2.5 versus 25.7 +/- 3.9 kg/m(2)) and higher lean mass (55.3 +/- 10.0 versus 48.5 +/- 10.4%), serum creatinine (1.04 +/- 0.12 versus 0.95 +/- 0.17 mg/dl), urinary creatinine (1437 +/- 471 versus 1231 +/- 430 mg/24 h), protein intake (1.4 +/- 0.6 versus 1.1 +/- 0.6 g/kg per d), and meat intake (0.7 +/- 0.3 versus 0.5 +/- 0.4 g/kg per d) than the sedentary individuals. Conversely, mean serum cystatin did not differ between these two groups. A multivariate analysis of covariance showed that lean mass was significantly related to serum and urinary creatinine but not with cystatin, even after adjustment for protein/meat intake and physical activity. Cystatin C may represent a more adequate alternative to assess renal function in individuals with higher muscle mass when mild kidney impairment is suspected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure.

              Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. The model of renal injury induced in mice by the anticancer agent cisplatin was chosen. Injection of mesenchymal stem cells of male bone marrow origin remarkably protected cisplatin-treated syngeneic female mice from renal function impairment and severe tubular injury. Y chromosome-containing cells localized in the context of the tubular epithelial lining and displayed binding sites for Lens culinaris lectin, indicating that mesenchymal stem cells engraft the damaged kidney and differentiate into tubular epithelial cells, thereby restoring renal structure and function. Mesenchymal stem cells markedly accelerated tubular proliferation in response to cisplatin-induced damage, as revealed by higher numbers of Ki-67-positive cells within the tubuli with respect to cisplatin-treated mice that were given saline. Hematopoietic stem cells failed to exert beneficial effects. These results offer a strong case for exploring the possibility that mesenchymal stem cells by virtue of their renotropic property and tubular regenerative potential may have a role in the treatment of acute renal failure in humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central
                1757-6512
                2013
                30 April 2013
                : 4
                : 2
                : 48
                Affiliations
                [1 ]Department of Clinical Sciences, Immunology, and Pathology, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
                [2 ]Department of Microbiology, Immunology, and Pathology, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
                Article
                scrt198
                10.1186/scrt198
                3707049
                23632128
                cf42f839-d363-4491-8229-198148d44485
                Copyright © 2013 Quimby et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 August 2012
                : 14 March 2013
                : 23 April 2013
                Categories
                Research

                Molecular medicine
                cell culture,cytokines,feline,kidney,mesenchymal stem cells,urine
                Molecular medicine
                cell culture, cytokines, feline, kidney, mesenchymal stem cells, urine

                Comments

                Comment on this article