2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis Strategies, Catalytic Applications, and Performance Regulation of Single‐Atom Catalysts

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references249

          • Record: found
          • Abstract: found
          • Article: not found

          Single-atom catalysis of CO oxidation using Pt1/FeOx.

          Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Heterogeneous single-atom catalysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-atom catalysts: a new frontier in heterogeneous catalysis.

              Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequently leads to undesired side reactions. It also makes it extremely difficult, if not impossible, to uniquely identify and control the active sites of interest. The ultimate small-size limit for metal particles is the single-atom catalyst (SAC), which contains isolated metal atoms singly dispersed on supports. SACs maximize the efficiency of metal atom use, which is particularly important for supported noble metal catalysts. Moreover, with well-defined and uniform single-atom dispersion, SACs offer great potential for achieving high activity and selectivity. In this Account, we highlight recent advances in preparation, characterization, and catalytic performance of SACs, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene. We discuss experimental and theoretical studies for a variety of reactions, including oxidation, water gas shift, and hydrogenation. We describe advances in understanding the spatial arrangements and electronic properties of single atoms, as well as their interactions with the support. Single metal atoms on support surfaces provide a unique opportunity to tune active sites and optimize the activity, selectivity, and stability of heterogeneous catalysts, offering the potential for applications in a variety of industrial chemical reactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                March 2021
                January 04 2021
                March 2021
                : 31
                : 12
                : 2008318
                Affiliations
                [1 ]School of Chemistry and Chemical Engineering Huazhong University of Science and Technology No. 1037 Luoyu Road Wuhan Hubei Province 430074 P. R. China
                [2 ]School of Chemistry and Environmental Engineering Key Laboratory of Green Chemical Engineering Process of Ministry of Education Wuhan Institute of Technology Liufang Campus, No. 206, Guanggu 1st road, Donghu New & High Technology Development Zone Wuhan Hubei Province 430205 P. R. China
                [3 ]School of Chemical Engineering Sungkyunkwan University 2066, Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Korea
                [4 ]Shenzhen Huazhong Unversity of Science and Technology Research Institute Shenzhen 518000 P. R. China
                Article
                10.1002/adfm.202008318
                cfb38968-9aed-4d23-832d-5e6d2501d690
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article