18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Withaferin A is a Leptin Sensitizer with Strong Anti-Diabetic Properties in Mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing global prevalence of obesity and its associated disorders point to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and thus promote weight loss, we analyzed a library of small molecules with mRNA expression profiles similar to that of celastrol, a naturally-occurring compound we previously identified as a leptin sensitizer. By this process we identified another natural compound, withaferin A, that also acts as a leptin sensitizer. We found that withaferin A treatment of diet-induced obese mice resulted in a 20-25% reduction of body weight, while also decreasing obesity-associated abnormalities including hepatic steatosis. Withaferin A marginally affects the body weight of ob/ob and db/db mice, which are both deficient in leptin signaling. In addition, withaferin A, unlike celastrol, has beneficial effects on glucose metabolism independently from its leptin-sensitizing effect. Our results show that the metabolic abnormalities of diet-induced obesity can be mitigated by sensitizing animals to endogenous leptin, and indicate that withaferin A is a potential leptin sensitizer with additional anti-diabetic actions.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic.

          We projected future prevalence and BMI distribution based on national survey data (National Health and Nutrition Examination Study) collected between 1970s and 2004. Future obesity-related health-care costs for adults were estimated using projected prevalence, Census population projections, and published national estimates of per capita excess health-care costs of obesity/overweight. The objective was to illustrate potential burden of obesity prevalence and health-care costs of obesity and overweight in the United States that would occur if current trends continue. Overweight and obesity prevalence have increased steadily among all US population groups, but with notable differences between groups in annual increase rates. The increase (percentage points) in obesity and overweight in adults was faster than in children (0.77 vs. 0.46-0.49), and in women than in men (0.91 vs. 0.65). If these trends continue, by 2030, 86.3% adults will be overweight or obese; and 51.1%, obese. Black women (96.9%) and Mexican-American men (91.1%) would be the most affected. By 2048, all American adults would become overweight or obese, while black women will reach that state by 2034. In children, the prevalence of overweight (BMI >/= 95th percentile, 30%) will nearly double by 2030. Total health-care costs attributable to obesity/overweight would double every decade to 860.7-956.9 billion US dollars by 2030, accounting for 16-18% of total US health-care costs. We continue to move away from the Healthy People 2010 objectives. Timely, dramatic, and effective development and implementation of corrective programs/policies are needed to avoid the otherwise inevitable health and societal consequences implied by our projections .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endoplasmic reticulum stress plays a central role in development of leptin resistance.

            Leptin has not evolved as a therapeutic modality for the treatment of obesity due to the prevalence of leptin resistance in a majority of the obese population. Nevertheless, the molecular mechanisms of leptin resistance remain poorly understood. Here, we show that increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in the hypothalamus of obese mice inhibits leptin receptor signaling. The genetic imposition of reduced ER capacity in mice results in severe leptin resistance and leads to a significant augmentation of obesity on a high-fat diet. Moreover, we show that chemical chaperones, 4-phenyl butyric acid (PBA), and tauroursodeoxycholic acid (TUDCA), which have the ability to decrease ER stress, act as leptin-sensitizing agents. Taken together, our results may provide the basis for a novel treatment of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of the obese gene product on body weight regulation in ob/ob mice.

              C57BL/6J mice with a mutation in the obese (ob) gene are obese, diabetic, and exhibit reduced activity, metabolism, and body temperature. Daily intraperitoneal injection of these mice with recombinant OB protein lowered their body weight, percent body fat, food intake, and serum concentrations of glucose and insulin. In addition, metabolic rate, body temperature, and activity levels were increased by this treatment. None of these parameters was altered beyond the level observed in lean controls, suggesting that the OB protein normalized the metabolic status of the ob/ob mice. Lean animals injected with OB protein maintained a smaller weight loss throughout the 28-day study and showed no changes in any of the metabolic parameters. These data suggest that the OB protein regulates body weight and fat deposition through effects on metabolism and appetite.
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                3 April 2018
                01 August 2016
                September 2016
                10 April 2018
                : 22
                : 9
                : 1023-1032
                Affiliations
                [1 ]Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
                Author notes
                [* ]Correspondence should be addressed to UO ( umut.ozcan@ 123456childrens.harvard.edu )
                [#]

                These authors contributed equally to this work

                Article
                NIHMS796208
                10.1038/nm.4145
                5892415
                27479085
                d02a774d-ce0f-42e7-894b-e078ea9f0036

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article