24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metabolic signature identifies novel targets for drug resistance in multiple myeloma.

      Cancer research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug resistance remains a major clinical challenge for cancer treatment. Multiple myeloma is an incurable plasma cell cancer selectively localized in the bone marrow. The main cause of resistance in myeloma is the minimal residual disease cells that are resistant to the original therapy, including bortezomib treatment and high-dose melphalan in stem cell transplant. In this study, we demonstrate that altered tumor cell metabolism is essential for the regulation of drug resistance in multiple myeloma cells. We show the unprecedented role of the metabolic phenotype in inducing drug resistance through LDHA and HIF1A in multiple myeloma, and that specific inhibition of LDHA and HIF1A can restore sensitivity to therapeutic agents such as bortezomib and can also inhibit tumor growth induced by altered metabolism. Knockdown of LDHA can restore sensitivity of bortezomib resistance cell lines while gain-of-function studies using LDHA or HIF1A induced resistance in bortezomib-sensitive cell lines. Taken together, these data suggest that HIF1A and LDHA are important targets for hypoxia-driven drug resistance. Novel drugs that regulate metabolic pathways in multiple myeloma, specifically targeting LDHA, can be beneficial to inhibit tumor growth and overcome drug resistance.

          Related collections

          Author and article information

          Journal
          25769724
          4433568
          10.1158/0008-5472.CAN-14-3400

          Comments

          Comment on this article