2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biocatalytic Resolution of Enantiomeric Mixtures of 1-Aminoethanephosphonic Acid

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several fungal strains, namely Bauveria bassiana, Cuninghamella echinulata, Aspergillus fumigatus, Penicillium crustosum and Cladosporium herbarum, were used as biocatalysts to resolve racemic mixtures of 1-aminoethanephosphonic acid using L/D amino acid oxidase activity. The course of reaction was analyzed by 31P-NMR in the presence of cyclodextrin used as chiral discriminating agent. The best result (42% e.e of R-isomer) was obtained with a strain of Cuninghamella echinulata.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Aminophosphonic acids of potential medical importance.

          Aminophosphonic acids were almost unknown in 1959 but today they are the subject of more than 6000 papers. Their negligible mammalian toxicity, and the fact that they very efficiently mimic aminocarboxylic acids makes them extremely important antimetabolites, which compete with their carboxylic counterparts for the active sites of enzymes and other cell receptors. Although biological importance of these compounds was recognized over 50 years ago they still represent promising and somewhat undiscovered class of potential drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity.

            A new class of very potent inhibitors of cytosol leucine aminopeptidase (LAP), a member of the metalloprotease family, is described. The X-ray structure of bovine lens leucine aminopeptidase complexed with the phosphonic acid analogue of leucine (LeuP) was used for structure-based design of novel LAP inhibitors and for the analysis of their interactions with the enzyme binding site. The inhibitors were designed by modification of phosphonic group in the LeuP structure toward finding the substituents bound at the S' side of the enzyme. This resulted in two classes of compounds, the phosphonamidate and phosphinate dipeptide analogues, which were synthesized and evaluated as inhibitors of the enzyme. The in vitro kinetic studies for the phosphinate dipeptide analogues revealed that these compounds belong to the group of the most effective LAP inhibitors found so far. Their further modification at the P1 position resulted in more active inhibitors, hPheP[CH(2)]Phe and hPheP[CH(2)]Tyr (K(i) values 66 nM and 67 nM, respectively, for the mixture of four diastereomers). The binding affinities of these inhibitors toward the enzyme are the highest, if considering all compounds containing a phosphorus atom that mimic the transition state of the reaction catalyzed by LAP. To evaluate selectivity of the designed LAP inhibitors, additional tests toward aminopeptidase N (APN) were performed. The key feature, which determines their selectivity, is structure at the P1' position. Aromatic and aliphatic substituents placed at this position strongly interact with the LAP S1' binding pocket, while a significant increase in binding affinity toward APN was observed for compounds containing aromatic versus leucine side chains at the P1' position. The most selective inhibitor, hPheP[CH(2)]Leu, binds to LAP with 15 times higher affinity than to APN. One of the studied compounds, hPheP[CH(2)]Tyr, appeared to be very potent inhibitor of APN (K(i) = 36 nM for the mixture of four diastereomers). The most promising LAP inhibitors designed by computer-aided approach, the phosphonamidate dipeptide analogues, were unstable at pH below 12, because of the P-N bond decomposition, which excluded the possibility of determination of their binding affinities toward LAP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphonates and their degradation by microorganisms.

              Phosphonates are a class of organophosphorus compounds characterized by a chemically stable carbon-to-phosphorus (C-P) bond. Wide occurrence of phosphonates among xenobiotics polluting the environment has aroused interest in pathways and mechanisms of their biodegradation. Only procaryotic microorganisms and the lower eucaryotes are capable of phosphonate biodegradation via several pathways. Destruction of the non-activated C-P bond by the C-P lyase pathway is of fundamental importance, and understanding of the process is a basic problem of biochemistry and physiology of microorganisms. This review offers analysis of available data on phosphonate-degrading microorganisms, degradation pathways, and genetic and physiological regulation of this process.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                14 July 2011
                July 2011
                : 16
                : 7
                : 5896-5904
                Affiliations
                Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: malgorzata.brzezinska-rodak@ 123456pwr.wroc.pl ; Tel.:+48-71-320-3302; Fax:+48-71-320-2427.
                Article
                molecules-16-05896
                10.3390/molecules16075896
                6264373
                21760571
                d07759e0-9d5a-4601-9c06-066d5d91fb74
                © 2011 by the authors;

                licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 29 June 2011
                : 12 July 2011
                : 12 July 2011
                Categories
                Article

                aminophosphonic acid,fungi,resolution of racemic mixture

                Comments

                Comment on this article