2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peeking under the canopy: anomalously short fire‐return intervals alter subalpine forest understory plant communities

      1 , 1 , 2 , 1
      New Phytologist
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          • Climate change is driving changes in disturbance regimes world‐wide. In forests adapted to infrequent, high‐severity fires, recent anomalously short fire‐return intervals (FRIs) have resulted in greatly reduced postfire tree regeneration. However, effects on understory plant communities remain unexplored.

          • Understory plant communities were sampled in 31 plot pairs across Greater Yellowstone (Wyoming, USA). Each pair included one plot burned at high severity twice in < 30 yr and one plot burned in the same most recent fire but not burned previously for > 125 yr. Understory communities following short‐interval fires were also compared with those following the previous long‐interval fire.

          • Species capable of growing in drier conditions and in lower vegetation zones became more abundant and regional differences in plant communities declined following short‐interval fire. Dissimilarity between plot pairs increased in mesic settings and decreased with time since fire and postfire winter snowfall. Reduced postfire tree density following short‐interval fire rather than FRI per se affected the occurrence of most plant species.

          • Anomalously short FRIs altered understory plant communities in space and time, with some indications of community thermophilization and regional homogenization. These and other shifts in understory plant communities may continue with ongoing changes in climate and fire across temperate forests.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: not found
          • Article: not found

          Fitting Linear Mixed-Effects Models Usinglme4

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Resilience and Stability of Ecological Systems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potential impacts of a warming climate on water availability in snow-dominated regions.

              All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability--predicted with high confidence and already diagnosed in some regions--are likely to be severe.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                New Phytologist
                New Phytologist
                Wiley
                0028-646X
                1469-8137
                August 2023
                May 31 2023
                August 2023
                : 239
                : 4
                : 1225-1238
                Affiliations
                [1 ] Department of Integrative Biology University of Wisconsin‐Madison Madison WI 53706 USA
                [2 ] TUM School of Life Sciences Technical University of Munich 85354 Freising Germany
                Article
                10.1111/nph.19009
                d0cf4e73-fbfc-49e3-a056-dff33aadfe78
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article