26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Biochemistry and pathology of radical-mediated protein oxidation.

          Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several categories of reactive species, and a range of stable products whose chemistry is currently being elucidated. Among the reactive products, protein hydroperoxides can generate further radical fluxes on reaction with transition-metal ions; protein-bound reductants (notably dopa) can reduce transition-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, this may contribute to the observed accumulation and damaging actions of oxidized proteins during aging and in pathologies such as diabetes, atherosclerosis and neurodegenerative diseases. Protein oxidation may also sometimes play controlling roles in cellular remodelling and cell growth. Proteins are also key targets in defensive cytolysis and in inflammatory self-damage. The possibility of selective protection against protein oxidation (antioxidation) is raised.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial metabolism of reactive oxygen species.

            Oxidative stress is considered a major contributor to etiology of both "normal" senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate.

              A fluorometric microplate assay was established for the detection of respiratory burst activity in phagocytic cells by assessing oxidation of 2',7'-dichlorofluorescin-diacetate (DCFH-DA). This method is based on flow cytometric studies by Bass et al. (J. Immunol. 130 (1983) p. 1910) describing intracellular detection of DCFH oxidation due to the presence of hydrogen peroxides. In the present study we have adapted the assay for use in microtiter plates to determine the amount of extracellular reactive oxidative products. DCFH-DA, granulocytes and stimuli (phorbol myristate acetate, n-formyl-methionyl-leucylphenylalanine, concanavalin A) were added to microtiter plates and after incubation at 37 degrees C, the development of fluorescence intensity was read in a fluorescence concentration analyzer (FCA, Baxter). Calibration of fluorescence units recorded by the FCA was achieved by comparison with defined amounts of fluorescent DCF. The change in measured fluorescence was linear with cell density over the range of 2 x 10(5)-1 x 10(6) cells/well. Cumulative DCF generation in individual wells could be recorded non-destructively at frequent intervals for time course measurements. Results from FCA measurements correlated perfectly with the FACS analysis of the same samples (r = 0.99). In conclusion, this assay can be useful for screening monoclonal antibodies recognizing cell surface structures possibly involved in signal transduction as well as for testing phagocytes for their capacity to release reactive oxidative intermediates.
                Bookmark

                Author and article information

                Journal
                Biomol Ther (Seoul)
                Biomol Ther (Seoul)
                Biomol Ther (Seoul)
                ksp
                Biomolecules & Therapeutics
                The Korean Society of Applied Pharmacology
                1976-9148
                2005-4483
                January 2016
                01 January 2016
                : 24
                : 1
                : 75-84
                Affiliations
                [1 ]Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
                [2 ]Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
                Author notes
                [* ]Corresponding Author: E-mail: jinwonh@ 123456jejunu.ac.kr , Tel: +82-64-754-3838, Fax: +82-64-702-2687
                Article
                bt-24-075
                10.4062/biomolther.2015.069
                4703356
                26759705
                d1036613-7e85-42ce-a5a8-03c95cad203b
                Copyright © 2016, The Korean Society of Applied Pharmacology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 June 2015
                : 10 August 2015
                : 20 August 2015
                Categories
                Original Article

                antioxidant system,oxidative stress,reactive oxygen species,rosmarinic acid,ultraviolet b

                Comments

                Comment on this article