4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nuciferine reduced fat deposition by controlling triglyceride and cholesterol concentration in broiler chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to investigate whether dietary nuciferine affects lipid metabolism in broiler chickens. Four treatment groups were made from 120 1-day-old broiler chickens including the base diet group (normal control [ NC], supplemented with 0 mg/kg of nuciferine) and groups treated with 25 mg/kg, 100 mg/kg, and 400 mg/kg of dietary nuciferine, which was supplemented for 42 d. The results showed that body weight, average daily weight gain, and absolute and relative fat and liver weight were significantly decreased with nuciferine supplementation. The plasma concentration of triiodothyronine, free triiodothyronine, thyroxine, and free thyroxine was significantly decreased in the nuciferine-supplemented group, but the plasma glucagon concentration was significantly increased. The plasma and hepatic triglyceride ( TG) and total cholesterol ( TC) concentrations were significantly decreased in the nuciferine group, but plasma and hepatic nonesterified fatty acid concentration, hepatic lipase activity, and hepatic glycogen content were significantly increased. Hepatic histological examination showed that fat cell volume and size in the 100 and 400 mg/kg group were smaller than those in the NC group. The fatty degeneration in the liver was decreased with nuciferine supplementation. The fat cell volume and size were shrunk in the nuciferine group. Dietary nuciferine supplementation significantly decreased the gene expression level of HMGCR, SREBP2, ACC, and SPEBP-1C, but significantly increased the gene expression level of LXR-α, CYP7A1, and CPT-I. The results indicated that nuciferine exhibited strong reduced fat deposition activities and reflected not only by decrease of the concentration of TG and TC but also by reduction in the key gene expression level of HMGCR, SREBP2, ACC, and SPEBP-1c and elevation of the key gene expression level of LXR-α, CYP7A1, and CPT-I. Taken together, our results suggested that the ability of nuciferine on reducing fat deposition in broiler chickens by regulating lipid metabolism was associated with the balance of TG and TC concentration.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.

            We identify berberine (BBR), a compound isolated from a Chinese herb, as a new cholesterol-lowering drug. Oral administration of BBR in 32 hypercholesterolemic patients for 3 months reduced serum cholesterol by 29%, triglycerides by 35% and LDL-cholesterol by 25%. Treatment of hyperlipidemic hamsters with BBR reduced serum cholesterol by 40% and LDL-cholesterol by 42%, with a 3.5-fold increase in hepatic LDLR mRNA and a 2.6-fold increase in hepatic LDLR protein. Using human hepatoma cells, we show that BBR upregulates LDLR expression independent of sterol regulatory element binding proteins, but dependent on ERK activation. BBR elevates LDLR expression through a post-transcriptional mechanism that stabilizes the mRNA. Using a heterologous system with luciferase as a reporter, we further identify the 5' proximal section of the LDLR mRNA 3' untranslated region responsible for the regulatory effect of BBR. These findings show BBR as a new hypolipidemic drug with a mechanism of action different from that of statin drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of reduced and compensatory growth.

              Growth is an integrated process, resulting from the response of cells dependent on the endocrine status and nutrient availability. During feed restriction, the production and secretion of growth hormone (GH) by the pituitary gland are enhanced, but the number of GH receptors decreases. Changes of GH binding proteins induce GH resistance and are followed by reduced insulin-like growth factor-I (IGF-I) secretion. On the other hand, high circulating levels of GH enhance the mobilization of fatty acids, which are used to support energy requirements. Thus, when feed restriction in growing animals is moderate, there is mainly protein but barely fat accretion. By contrast, a severe feed restriction enhances the release of catabolic hormones and stimulates, from muscle cells, the liberation of amino acids, which are used by hepatocytes for gluconeogenesis. During refeeding and compensatory growth, the secretion of insulin is sharply enhanced and plasma GH concentrations remain high. This situation probably allows more nutrients to be used for growth processes. The role of plasma IGF-I during compensatory growth is not clear and must be explained in connection with changes of its binding proteins. Thyroxin and 3,5,3'-triiodothyronine seem to have a permissive effect on growth. The simultaneous occurrence of puberty with refeeding can exert a synergistic effect on growth. Initially, compensatory growth is characterized by the deposition of very lean tissue, similar as during feed restriction. This lasts for some weeks. Then, protein synthesis decreases and high feed intake leads to increased fat deposition.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                12 September 2020
                December 2020
                12 September 2020
                : 99
                : 12
                : 7101-7108
                Affiliations
                []College of Animal Sciences (College of Bee Science), Jinshan College of Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province 350002, PR China
                []Collaborative Innovation Center of Animal Health and Food Safety Application Technology in Fujian, Fujian Vocational College of Agriculture, Fuzhou City, Fujian Province 350002, PR China
                []Department of Biotechnology, Fujian Vocational College of Bioengineering, Fuzhou City, Fujian Province 350002, PR China
                Author notes
                [2 ]Corresponding author: xiezhenglu@ 123456fafu.edu.cn
                [1]

                Authors contributed equally to this work.

                Article
                S0032-5791(20)30642-8
                10.1016/j.psj.2020.09.013
                7705000
                33248627
                d134575e-4cbb-4db4-ac79-ee979115116d
                © 2020 Published by Elsevier Inc. on behalf of Poultry Science Association Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 July 2020
                : 3 September 2020
                Categories
                Physiology and Reproduction

                nuciferine,broiler chicken,liver,fat deposition
                nuciferine, broiler chicken, liver, fat deposition

                Comments

                Comment on this article