Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Melatonin reduces melanogenesis by inhibiting the paracrine effects of keratinocytes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte‐mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin‐treated HaCaT cells downregulated melanogenesis‐related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin‐treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET‐1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET‐1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK.

          The reactions of N(1) -acetyl-N(2) -formyl-5-methoxykynuramine (AFMK) and N(1) -acetyl-5-methoxykynuramine (AMK) with (•) OH, (•) OOH, and •OOCCl3 radicals have been studied using the density functional theory. Three mechanisms of reaction have been considered: radical adduct formation (RAF), hydrogen transfer (HT), and single electron transfer (SET). Their relative importance for the free radical scavenging activity of AFMK and AMK has been assessed. It was found that AFMK and AMK react with •OH at diffusion-limited rates, regardless of the polarity of the environment, which supports their excellent •OH radical scavenging activity. Both compounds were found to be also very efficient for scavenging •OOCCl3 , but rather ineffective for scavenging •OOH. Regarding their relative activity, it was found that AFMK systematically is a poorer scavenger than AMK and melatonin. In aqueous solution, AMK was found to react faster than melatonin with all the studied free radicals, while in nonpolar environments, the relative efficiency of AMK and melatonin as free radical scavengers depends on the radical with which they are reacting. Under such conditions, melatonin is predicted to be a better •OOH and •OOCCl3 scavenger than AMK, while AMK is predicted to be slightly better than melatonin for scavenging •OH. Accordingly it seems that melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions. Thus, the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade. © 2012 John Wiley & Sons A/S.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line

            In contrast to mouse epidermal cells, human skin keratinocytes are rather resistant to transformation in vitro. Immortalization has been achieved by SV40 but has resulted in cell lines with altered differentiation. We have established a spontaneously transformed human epithelial cell line from adult skin, which maintains full epidermal differentiation capacity. This HaCaT cell line is obviously immortal (greater than 140 passages), has a transformed phenotype in vitro (clonogenic on plastic and in agar) but remains nontumorigenic. Despite the altered and unlimited growth potential, HaCaT cells, similar to normal keratinocytes, reform an orderly structured and differentiated epidermal tissue when transplanted onto nude mice. Differentiation- specific keratins (Nos. 1 and 10) and other markers (involucrin and filaggrin) are expressed and regularly located. Thus, HaCaT is the first permanent epithelial cell line from adult human skin that exhibits normal differentiation and provides a promising tool for studying regulation of keratinization in human cells. On karyotyping this line is aneuploid (initially hypodiploid) with unique stable marker chromosomes indicating monoclonal origin. The identity of the HaCaT line with the tissue of origin was proven by DNA fingerprinting using hypervariable minisatellite probes. This is the first demonstration that the DNA fingerprint pattern is unaffected by long- term cultivation, transformation, and multiple chromosomal alterations, thereby offering a unique possibility for unequivocal identification of human cell lines. The characteristics of the HaCaT cell line clearly document that spontaneous transformation of human adult keratinocytes can occur in vitro and is associated with sequential chromosomal alterations, though not obligatorily linked to major defects in differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanin pigmentation in mammalian skin and its hormonal regulation.

              Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.
                Bookmark

                Author and article information

                Contributors
                Journal
                Experimental Dermatology
                Experimental Dermatology
                Wiley
                0906-6705
                1600-0625
                April 2023
                January 21 2023
                April 2023
                : 32
                : 4
                : 511-520
                Affiliations
                [1 ] Department of Dermatology, Third Xiangya Hospital Central South University Changsha China
                [2 ] Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine Changsha China
                Article
                10.1111/exd.14743
                36620869
                d1450f7a-6a28-48d6-858b-9f3a70a2d020
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article