14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liraglutide Reduces Visceral and Intrahepatic Fat Without Significant Loss of Muscle Mass in Obese Patients With Type 2 Diabetes: A Prospective Case Series

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glucagon-like peptide-1 receptor agonists have been reported to reduce body fat as well as improving glycemic control in obese patients with type 2 diabetes. However, the maximum dose of liraglutide is limited to 0.9 mg in Japan, while the international dose is 1.8 mg; and the effect of this low dose on body composition has not been assessed in detail. Accordingly, this study was performed to evaluate the effect of liraglutide on body composition when administered at 0.9 mg once daily for 24 weeks.

          Methods

          Nine patients were enrolled and started liraglutide at 0.3 mg once daily, which was titrated to 0.9 mg once daily after 1 - 2 weeks and continued for 24 weeks. To comprehensively investigate changes of body composition, the body fat and muscle weight were determined by dual energy absorptiometry, visceral fat volume (VFV) and abdominal subcutaneous fat volume (SFV) were measured by abdominal computed tomography (CT), and the intrahepatic lipid content (IHL) was assessed by proton magnetic resonance spectroscopy. Measurements were obtained before starting liraglutide therapy and after 12 and 24 weeks of treatment.

          Results

          Fasting plasma glucose was significantly reduced from 127 ± 22 to 101 ± 14 mg/dL at 24 weeks and hemoglobin A1c (HbA1c) showed significant reduction from 6.4±0.9% to 5.2±0.5%. Body weight was reduced from 103.4 ± 14.7 to 97.0 ± 12.4 kg (mean reduction: 11.7%) and BMI decreased from 37.4 ± 6.4 to 35.0 ± 5.3 kg/m 2 (mean reduction: 5.8%). Furthermore, VFV and IHL decreased from 5,192 ± 1,730 to 4,513 ± 1,299 cm 3 (mean reduction: 11.9%) and 32.1±12.6% to 15.2±9.2% (mean reduction: 49.2%), respectively, but SFV did not change. Moreover, the fat index was reduced from 14.8 ± 4.4 to 12.9 ± 3.4 kg/m 2 (mean reduction: 10.9%), but the skeletal muscle index did not change.

          Conclusions

          In obese Japanese drug-naive patients who had type 2 diabetes, treatment with liraglutide (0.9 mg once daily for 24 weeks) reduced body fat, especially visceral fat and intrahepatic fat, while having no significant effect on skeletal muscle.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin.

          Dapagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces hyperglycemia in patients with type 2 diabetes mellitus (T2DM) by increasing urinary glucose excretion, and weight loss is a consistent associated finding. Our objectives were to confirm weight loss with dapagliflozin and establish through body composition measurements whether weight loss is accounted for by changes in fat or fluid components. This was a 24-wk, international, multicenter, randomized, parallel-group, double-blind, placebo-controlled study with ongoing 78-wk site- and patient-blinded extension period at 40 sites in five countries. Included were 182 patients with T2DM (mean values: women 63.3 and men 58.6 yr of age; hemoglobin A1c 7.17%, body mass index 31.9 kg/m2, and body weight 91.5 kg) inadequately controlled on metformin. Dapagliflozin 10 mg/d or placebo was added to open-label metformin for 24 wk. Primary endpoint was total body weight (TBW) change from baseline at wk 24. Key secondary endpoints were waist circumference and dual-energy x-ray absorptiometry total-body fat mass (FM) changes from baseline at wk 24, and patient proportion achieving body weight reduction of at least 5% at wk 24. In a subset of patients, magnetic resonance assessment of visceral adipose tissue (VAT) and sc adipose tissue (SAT) volume and hepatic lipid content were also evaluated. At wk 24, placebo-corrected changes with dapagliflozin were as follows: TBW, -2.08 kg [95% confidence interval (CI)=-2.84 to -1.31; P<0.0001]; waist circumference, -1.52 cm (95% CI=-2.74 to -0.31; P=0.0143); FM, -1.48 kg (95% CI=-2.22 to -0.74; P=0.0001); proportion of patients achieving weight reduction of at least 5%, +26.2% (95% CI=15.5 to 36.7; P<0.0001); VAT, -258.4 cm3 (95% CI=-448.1 to -68.6; nominal P=0.0084); SAT, -184.9 cm3 (95% CI=-359.7 to -10.1; nominal P=0.0385). In the dapagliflozin vs. placebo groups, respectively, serious adverse events were reported in 6.6 vs. 1.1%; events suggestive of vulvovaginitis, balanitis, and related genital infection in 3.3 vs. 0%; and lower urinary tract infections in 6.6 vs. 2.2%. Dapagliflozin reduces TBW, predominantly by reducing FM, VAT and SAT in T2DM inadequately controlled with metformin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effects of once‐weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity

            Aim The aim of this trial was to investigate the mechanism of action for body weight loss with semaglutide. Materials and methods This randomised, double‐blind, placebo‐controlled, two‐period crossover trial investigated the effects of 12 weeks of treatment with once‐weekly subcutaneous semaglutide, dose‐escalated to 1.0 mg, in 30 subjects with obesity. Ad libitum energy intake, ratings of appetite, thirst, nausea and well‐being, control of eating, food preference, resting metabolic rate, body weight and body composition were assessed. Results After a standardised breakfast, semaglutide, compared with placebo, led to a lower ad libitum energy intake during lunch (−1255 kJ; P  < .0001) and during the subsequent evening meal ( P  = .0401) and snacks ( P  = .0034), resulting in a 24% reduction in total energy intake across all ad libitum meals throughout the day (−3036 kJ; P  < .0001). Fasting overall appetite suppression scores were improved with semaglutide vs placebo, while nausea ratings were similar. Semaglutide was associated with less hunger and food cravings, better control of eating and a lower preference for high‐fat foods. Resting metabolic rate, adjusted for lean body mass, did not differ between treatments. Semaglutide led to a reduction from baseline in mean body weight of 5.0 kg, predominantly from body fat mass. Conclusion After 12 weeks of treatment, ad libitum energy intake was substantially lower with semaglutide vs placebo with a corresponding loss of body weight observed with semaglutide. In addition to reduced energy intake, likely mechanisms for semaglutide‐induced weight loss included less appetite and food cravings, better control of eating and lower relative preference for fatty, energy‐dense foods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue.

              The effect on body composition of liraglutide, a once-daily human glucagon-like peptide-1 analogue, as monotherapy or added to metformin was examined in patients with type 2 diabetes (T2D). These were randomized, double-blind, parallel-group trials of 26 [Liraglutide Effect and Action in Diabetes-2 (LEAD-2)] and 52 weeks (LEAD-3). Patients with T2D, aged 18-80 years, body mass index (BMI) < or =40 kg/m(2) (LEAD-2), < or =45 kg/m(2) (LEAD-3) and HbA1c 7.0-11.0% were included. Patients were randomized to liraglutide 1.8, 1.2 or 0.6 mg/day, placebo or glimepiride 4 mg/day, all combined with metformin 1.5-2 g/day in LEAD-2 and to liraglutide 1.8, 1.2 or glimepiride 8 mg/day in LEAD-3. LEAD-2/3: total lean body tissue, fat tissue and fat percentage were measured. LEAD-2: adipose tissue area and hepatic steatosis were assessed. LEAD-2: fat percentage with liraglutide 1.2 and 1.8 mg/metformin was significantly reduced vs. glimepiride/metformin (p < 0.05) but not vs. placebo. Visceral and subcutaneous adipose tissue areas were reduced from baseline in all liraglutide/metformin arms. Except with liraglutide 0.6 mg/metformin, reductions were significantly different vs. changes seen with glimepiride (p < 0.05) but not with placebo. Liver-to-spleen attenuation ratio increased with liraglutide 1.8 mg/metformin possibly indicating reduced hepatic steatosis. LEAD-3: reductions in fat mass and fat percentage with liraglutide monotherapy were significantly different vs. increases with glimepiride (p < 0.01). Liraglutide (monotherapy or added to metformin) significantly reduced fat mass and fat percentage vs. glimepiride in patients with T2D.
                Bookmark

                Author and article information

                Journal
                J Clin Med Res
                J Clin Med Res
                Elmer Press
                Journal of Clinical Medicine Research
                Elmer Press
                1918-3003
                1918-3011
                March 2019
                13 February 2019
                : 11
                : 3
                : 219-224
                Affiliations
                [a ]Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
                Author notes
                [b ]Corresponding Author: Yoshio Nagai, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan. Email: ynagai@ 123456marianna-u.ac.jp
                Article
                10.14740/jocmr3647
                6396779
                30834046
                d1472a01-8ac5-41ed-9ad6-e18cf3b833c8
                Copyright 2019, Ishii et al.

                This article is distributed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2019
                : 24 January 2019
                Categories
                Short Communication

                Medicine
                liraglutide,visceral fat volume,subcutaneous fat volume,intrahepatic lipid content,skeletal muscle index

                Comments

                Comment on this article