0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Artificially Intelligent Readers: An Adaptive Framework for Original Handwritten Numerical Digits Recognition with OCR Methods

      , , , , ,
      Information
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced artificial intelligence (AI) techniques have led to significant developments in optical character recognition (OCR) technologies. OCR applications, using AI techniques for transforming images of typed text, handwritten text, or other forms of text into machine-encoded text, provide a fair degree of accuracy for general text. However, even after decades of intensive research, creating OCR with human-like abilities has remained evasive. One of the challenges has been that OCR models trained on general text do not perform well on localized or personalized handwritten text due to differences in the writing style of alphabets and digits. This study aims to discuss the steps needed to create an adaptive framework for OCR models, with the intent of exploring a reasonable method to customize an OCR solution for a unique dataset of English language numerical digits were developed for this study. We develop a digit recognizer by training our model on the MNIST dataset with a convolutional neural network and contrast it with multiple models trained on combinations of the MNIST and custom digits. Using our methods, we observed results comparable with the baseline and provided recommendations for improving OCR accuracy for localized or personalized handwritten text. This study also provides an alternative perspective to generating data using conventional methods, which can serve as a gold standard for custom data augmentation to help address the challenges of scarce data and data imbalance.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Gradient-based learning applied to document recognition

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures

            Recurrent neural networks (RNNs) have been widely adopted in research areas concerned with sequential data, such as text, audio, and video. However, RNNs consisting of sigma cells or tanh cells are unable to learn the relevant information of input data when the input gap is large. By introducing gate functions into the cell structure, the long short-term memory (LSTM) could handle the problem of long-term dependencies well. Since its introduction, almost all the exciting results based on RNNs have been achieved by the LSTM. The LSTM has become the focus of deep learning. We review the LSTM cell and its variants to explore the learning capacity of the LSTM cell. Furthermore, the LSTM networks are divided into two broad categories: LSTM-dominated networks and integrated LSTM networks. In addition, their various applications are discussed. Finally, future research directions are presented for LSTM networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition

              Image-based sequence recognition has been a long-standing research topic in computer vision. In this paper, we investigate the problem of scene text recognition, which is among the most important and challenging tasks in image-based sequence recognition. A novel neural network architecture, which integrates feature extraction, sequence modeling and transcription into a unified framework, is proposed. Compared with previous systems for scene text recognition, the proposed architecture possesses four distinctive properties: (1) It is end-to-end trainable, in contrast to most of the existing algorithms whose components are separately trained and tuned. (2) It naturally handles sequences in arbitrary lengths, involving no character segmentation or horizontal scale normalization. (3) It is not confined to any predefined lexicon and achieves remarkable performances in both lexicon-free and lexicon-based scene text recognition tasks. (4) It generates an effective yet much smaller model, which is more practical for real-world application scenarios. The experiments on standard benchmarks, including the IIIT-5K, Street View Text and ICDAR datasets, demonstrate the superiority of the proposed algorithm over the prior arts. Moreover, the proposed algorithm performs well in the task of image-based music score recognition, which evidently verifies the generality of it.
                Bookmark

                Author and article information

                Contributors
                Journal
                INFOGG
                Information
                Information
                MDPI AG
                2078-2489
                June 2023
                May 26 2023
                : 14
                : 6
                : 305
                Article
                10.3390/info14060305
                d1596e8c-f58f-4d60-94b7-e53724a5e183
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article