0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactobacillus plantarum-12 can relieve colitis, and the results have some practical value in applications.

          Abstract

          Some strains of lactobacilli can exert beneficial effects on a host when ingested in an adequate dose, such as immunoregulation and anti-inflammatory activities. In this study, the survival abilities under simulated gastrointestinal conditions, adhesion abilities on HT-29 cell monolayers, and hemolytic activities of four Lactobacillus plantarum strains were assessed. Among the four strains, L. plantarum-12 showed the higher survival rate under simulated gastrointestinal conditions and adhesion index on the HT-29 cell monolayers, exhibited γ-haemolytic activity and had no biological amine producing ability. L. plantarum-12 was administered to dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) Balb/c mice by oral gavage for 10 days. It was observed that the UC Balb/c mice showed symptoms of colonic atrophy, intestinal histopathological change, gut microbial disturbance, and pro-inflammatory cytokine expression. L. plantarum-12 administration remarkably attenuated DSS-induced UC in mice . L. plantarum-12 administration could restore gut microbiota by increasing beneficial bacteria such as Lactobacillus and decreasing intestinal pathogenic bacteria like Proteobacteria. L. plantarum-12 administration could improve immunity via activating the janus kinase-signal transducer and the activator of the transcription (JAK-STAT) pathway and up-regulating adenosine deaminase (ADA) and interferon-induced protein with tetratricopeptide repeats 1 protein (IFIT1), and enforce the intestinal barrier function by up-regulating mucin 2 (MUC2) protein expression. In conclusion, L. plantarum-12 could attenuate DSS-induced UC in Balb/c mice by ameliorating intestinal inflammation, and restoring the disturbed gut microbiota. L. plantarum-12 could be used as promising probiotics to ameliorate colitis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation

          Ulcerative colitis (UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors contribute to the pathogenesis of UC. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been inconclusive. Studies have shown that probiotics improve intestinal mucosa barrier function and immune system function and promote secretion of anti-inflammatory factors, thereby inhibiting the growth of harmful bacteria in the intestine. Fecal microbiota transplantation (FMT) can reduce bowel permeability and thus the severity of disease by increasing the production of short-chain fatty acids, especially butyrate, which help maintain the integrity of the epithelial barrier. FMT can also restore immune dysbiosis by inhibiting Th1 differentiation, activity of T cells, leukocyte adhesion, and production of inflammatory factors. Probiotics and FMT are being increasingly used to treat UC, but their use is controversial because of uncertain efficacy. Here, we briefly review the role of intestinal microbiota in the pathogenesis and treatment of UC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests.

            The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotic resistance in food lactic acid bacteria--a review.

              Antibiotics are a major tool utilized by the health care industry to fight bacterial infections; however, bacteria are highly adaptable creatures and are capable of developing resistance to antibiotics. Consequently, decades of antibiotic use, or rather misuse, have resulted in bacterial resistance to many modern antibiotics. This antibiotic resistance can cause significant danger and suffering for many people with common bacterial infections, those once easily treated with antibiotics. For several decades studies on selection and dissemination of antibiotic resistance have focused mainly on clinically relevant species. However, recently many investigators have speculated that commensal bacteria including lactic acid bacteria (LAB) may act as reservoirs of antibiotic resistance genes similar to those found in human pathogens. The main threat associated with these bacteria is that they can transfer resistance genes to pathogenic bacteria. Genes conferring resistance to tetracycline, erythromycin and vancomycin have been detected and characterized in Lactococcus lactis, Enterococci and, recently, in Lactobacillus species isolated from fermented meat and milk products. A number of initiatives have been recently launched by various organizations across the globe to address the biosafety concerns of starter cultures and probiotic microorganisms. The studies can lead to better understanding of the role played by the dairy starter microorganisms in horizontal transfer of antibiotic resistance genes to intestinal microorganisms and food-associated pathogenic bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                June 24 2020
                2020
                : 11
                : 6
                : 5205-5222
                Affiliations
                [1 ]School of Food Science and Technology
                [2 ]Dalian Polytechnic University
                [3 ]Dalian 116034
                [4 ]P. R. China
                [5 ]Food Science Department
                [6 ]Pennsylvania State University
                [7 ]Pennsylvania
                [8 ]USA
                [9 ]Institute of Food Research
                [10 ]Hezhou University
                [11 ]Hezhou 542899
                [12 ]Dalian probiotics function research key laboratory
                Article
                10.1039/D0FO00007H
                32458908
                d19e87b7-eb4c-4932-b384-aa49ce12e8aa
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article