25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of gravity or confining pressure and contact stiffness in granular rheology

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The steady shear rheology of granular materials is investigated in slow quasi-static states and inertial flows. The effect of the gravity field and contact stiffness, which are conventionally trivialized is the focus of this study. Series of Discrete Element Method simulations are performed on a weakly frictional granular assembly in a split-bottom geometry considering various gravity fields and contact stiffnesses. While traditionally the inertial number, i.e., the ratio of stress to strain-rate timescales describes the flow rheology, we find that a second dimensionless number, the ratio of softness and stress timescales, must also be included to characterize the bulk flow behavior. For slow, quasi-static flows, the density increases while the macroscopic friction decreases with respective increase in particle softness and gravity. This trend is added to the \(\mu(I)\) rheology and can be traced back to the anisotropy in the contact network, displaying a linear correlation between macroscopic friction and deviatoric fabric in the steady state. Interestingly, the linear relation holds when the external rotation rate is increased for a given gravity field and contact stiffness.

          Related collections

          Author and article information

          Journal
          02 December 2014
          Article
          10.1088/1367-2630/17/4/043028
          1412.0874
          d2191a14-17bb-41c0-93c8-440877f9e41d

          http://creativecommons.org/licenses/by/3.0/

          History
          Custom metadata
          27 pages, 15 figures
          cond-mat.soft

          Comments

          Comment on this article