3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics of infection-elicited SARS-CoV-2 antibodies in children over time

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N); S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children’s sera decreased modestly from one to six months; a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support.

          Research electronic data capture (REDCap) is a novel workflow methodology and software solution designed for rapid development and deployment of electronic data capture tools to support clinical and translational research. We present: (1) a brief description of the REDCap metadata-driven software toolset; (2) detail concerning the capture and use of study-related metadata from scientific research teams; (3) measures of impact for REDCap; (4) details concerning a consortium network of domestic and international institutions collaborating on the project; and (5) strengths and limitations of the REDCap system. REDCap is currently supporting 286 translational research projects in a growing collaborative network including 27 active partner institutions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

              Summary A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.
                Bookmark

                Author and article information

                Journal
                medRxiv
                MEDRXIV
                medRxiv
                Cold Spring Harbor Laboratory
                25 January 2022
                : 2022.01.14.22269235
                Affiliations
                [a ]Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
                [b ]Department of Microbiology, University of Washington, Seattle, Washington, USA
                [c ]Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
                [d ]Department of Genome Sciences, University of Washington, Seattle, Washington, USA
                [e ]Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
                [f ]Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
                [g ]Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
                [h ]Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
                [i ]Howard Hughes Medical Institute, Seattle, Washington, USA
                [j ]Department of Pediatrics, University of Washington, Seattle, Washington, USA
                Author notes
                [# ]Address correspondence to Jesse D. Bloom, jbloom@ 123456fredhutch.org , or Janet A. Englund, janet.englund@ 123456seattlechildrens.org .
                Article
                10.1101/2022.01.14.22269235
                8811949
                35118481
                d29cfdb3-83b6-424e-9a64-20fcc120d443

                This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.

                History
                Categories
                Article

                sars-cov-2,pediatric serology,neutralizing antibodies,anti-nucleocapsid antibodies,longitudinal dynamics

                Comments

                Comment on this article