14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccination is one of the most effective approaches in the prevention and control of disease worldwide. Oral vaccination could have wide applications if effective protection cannot be achieved through traditional (eg, parenteral) routes of vaccination. However, oral administration is hampered by the difficulties in transferring vaccines in vivo. This has led to the development of materials such as carriers with potential adjuvant effects. Considering the requirements for selecting adjuvants for oral vaccines as well as the advantages of nanoparticle/microparticle materials as immune effectors and antigen conveyors, synthetic materials could improve the efficiency of oral vaccination. In this review, nanoparticles and microparticles with adjuvant characteristics are described with regard to their potential importance for oral immunization, and some promising and successful modification strategies are summarized.

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores

          Zhao, Feng, Huo (1998)
          Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms. The SBA-15 materials are synthesized in acidic media to produce highly ordered, two-dimensional hexagonal (space group p6mm) silica-block copolymer mesophases. Calcination at 500 degrees C gives porous structures with unusually large interlattice d spacings of 74.5 to 320 angstroms between the (100) planes, pore sizes from 46 to 300 angstroms, pore volume fractions up to 0.85, and silica wall thicknesses of 31 to 64 angstroms. SBA-15 can be readily prepared over a wide range of uniform pore sizes and pore wall thicknesses at low temperature (35 degrees to 80 degrees C), using a variety of poly(alkylene oxide) triblock copolymers and by the addition of cosolvent organic molecules. The block copolymer species can be recovered for reuse by solvent extraction with ethanol or removed by heating at 140 degrees C for 3 hours, in both cases, yielding a product that is thermally stable in boiling water.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dendrimers in drug research.

            Dendrimers are versatile, derivatisable, well-defined, compartmentalised chemical polymers with sizes and physicochemical properties resembling those of biomolecules e.g. proteins. The present critical review (citing 158 references) briefly describes dendrimer design, nomenclature and divergent/convergent dendrimer synthesis. The characteristic physicochemical features of dendrimers are highlighted, showing the effect of solvent pH and polarity on their spatial structure. The use of dendrimers in biological systems are reviewed, with emphasis on the biocompatibility of dendrimers, such as in vitro and in vivo cytotoxicity, as well as biopermeability, biostability and immunogenicity. The review deals with numerous applications of dendrimers as tools for efficient multivalent presentation of biological ligands in biospecific recognition, inhibition and targeting. Dendrimers may be used as drugs for antibacterial and antiviral treatment and have found use as antitumor agents. The review highlights the use of dendrimers as drug or gene delivery devices in e.g. anticancer therapy, and the design of different host-guest binding motifs directed towards medical applications is described. Other specific examples are the use of dendrimers as 'glycocarriers' for the controlled multimeric presentation of biologically relevant carbohydrate moieties which are useful for targeting modified tissue in malignant diseases for diagnostic and therapeutic purposes. Finally, the use of specific types of dendrimers as scaffolds for presenting vaccine antigens, especially peptides, for use in vaccines is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives.

              Biodegradable nano/microparticles of poly(D,L-lactide-co-glycolide) (PLGA) and PLGA-based polymers are widely explored as carriers for controlled delivery of macromolecular therapeutics such as proteins, peptides, vaccines, genes, antigens, growth factors, etc. These devices are mainly produced by emulsion or double-emulsion technique followed by solvent evaporation or spray drying. Drug encapsulation, particle size, additives added during formulation, molecular weight, ratio of lactide to glycolide moieties in PLGA and surface morphology could influence the release characteristics. Encapsulation efficiency and release rates through nano/microparticle-mediated drug delivery devices can be optimized to improve their therapeutic efficacy. In this review, important findings of the past decade on the encapsulation and release profiles of macromolecular therapeutics from PLGA and PLGA-based nano/microparticles are discussed critically in relation to nature and type of bioactive molecule, carrier polymer and experimental variables that influence the delivery of macromolecular therapeutics. Even though extensive research on biodegradable microparticles containing macromolecular drugs has greatly advanced to the level of production know-how, the effects of critical parameters influencing drug encapsulation are not sufficiently investigated for nano-scaled carriers. The present review attempts to address some important data on nano/microparticle-based delivery systems of PLGA and PLGA-derived polymers with reference to macromolecular drugs.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2018
                21 May 2018
                : 13
                : 2973-2987
                Affiliations
                [1 ]College of Life Sciences, Fujian Normal University, Fuzhou, China
                [2 ]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
                [3 ]National Engineering Research Center for Sugarcane, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
                Author notes
                Correspondence: Yunkun Wu, College of Life Sciences, Fujian Normal University, 1, Keji Road, Fuzhou 350117, China, Tel +86 591 6317 3176, Fax +86 591 6317 3174, Email wuyk@ 123456fjnu.edu.cn
                [*]

                These authors contributed equally to this work

                Article
                ijn-13-2973
                10.2147/IJN.S154743
                5968786
                d2a55477-4a22-45e0-980c-da4b8349130f
                © 2018 Zhang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Molecular medicine
                oral vaccine,np/mp conveyors,intestine,antibody,immune response
                Molecular medicine
                oral vaccine, np/mp conveyors, intestine, antibody, immune response

                Comments

                Comment on this article