33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dendritic cell maturation in the corneal epithelium with onset of type 2 diabetes is associated with tumor necrosis factor receptor superfamily member 9

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 2 diabetes mellitus is characterized by a low-grade inflammation; however, mechanisms leading to this inflammation in specific tissues are not well understood. The eye can be affected by diabetes; thus, we hypothesized that inflammatory changes in the eye may parallel the inflammation that develops with diabetes. Here, we developed a non-invasive means to monitor the status of inflammatory dendritic cell (DC) subsets in the corneal epithelium as a potential biomarker for the onset of inflammation in type 2 diabetes. In an age-matched cohort of 81 individuals with normal and impaired glucose tolerance and type 2 diabetes, DCs were quantified from wide-area maps of the corneal epithelial sub-basal plexus, obtained using clinical in vivo confocal microscopy (IVCM). With the onset of diabetes, the proportion of mature, antigen-presenting DCs increased and became organized in clusters. Out of 92 plasma proteins analysed in the cohort, tumor necrosis factor receptor super family member 9 (TNFRSF9) was associated with the observed maturation of DCs from an immature to mature antigen-presenting phenotype. A low-grade ocular surface inflammation observed in this study, where resident immature dendritic cells are transformed into mature antigen-presenting cells in the corneal epithelium, is a process putatively associated with TNFRSF9 signalling and may occur early in the development of type 2 diabetes. IVCM enables this process to be monitored non-invasively in the eye.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.

          A subclinical inflammatory reaction has been shown to precede the onset of type 2 (non-insulin-dependent) diabetes. We therefore examined prospectively the effects of the central inflammatory cytokines interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) on the development of type 2 diabetes. We designed a nested case-control study within the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study including 27,548 individuals. Case subjects were defined to be those who were free of type 2 diabetes at baseline and subsequently developed type 2 diabetes during a 2.3-year follow-up period. A total of 192 cases of incident type 2 diabetes were identified and matched with 384 non-disease-developing control subjects. IL-6 and TNF-alpha levels were found to be elevated in participants with incident type 2 diabetes, whereas IL-1beta plasma levels did not differ between the groups. Analysis of single cytokines revealed IL-6 as an independent predictor of type 2 diabetes after adjustment for age, sex, BMI, waist-to-hip ratio (WHR), sports, smoking status, educational attainment, alcohol consumption, and HbA(1c) (4th vs. the 1st quartile: odds ratio [OR] 2.6, 95% CI 1.2-5.5). The association between TNF-alpha and future type 2 diabetes was no longer significant after adjustment for BMI or WHR. Interestingly, combined analysis of the cytokines revealed a significant interaction between IL-1beta and IL-6. In the fully adjusted model, participants with detectable levels of IL-1beta and elevated levels of IL-6 had an independently increased risk to develop type 2 diabetes (3.3, 1.7-6.8), whereas individuals with increased concentrations of IL-6 but undetectable levels of IL-1beta had no significantly increased risk, both compared with the low-level reference group. These results were confirmed in an analysis including only individuals with HbA(1c) <5.8% at baseline. Our data suggest that the pattern of circulating inflammatory cytokines modifies the risk for type 2 diabetes. In particular, a combined elevation of IL-1beta and IL-6, rather than the isolated elevation of IL-6 alone, independently increases the risk of type 2 diabetes. These data strongly support the hypothesis that a subclinical inflammatory reaction has a role in the pathogenesis of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A central role for inflammation in the pathogenesis of diabetic retinopathy.

            Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes.

              There is increasing evidence that an ongoing cytokine-induced acute-phase response (sometimes called low-grade inflammation, but part of a widespread activation of the innate immune system) is closely involved in the pathogenesis of type 2 diabetes and associated complications such as dyslipidemia and atherosclerosis. Elevated circulating inflammatory markers such as C-reactive protein and interleukin-6 predict the development of type 2 diabetes, and several drugs with anti-inflammatory properties lower both acute-phase reactants and glycemia (aspirin and thiazolidinediones) and possibly decrease the risk of developing type 2 diabetes (statins). Among the risk factors for type 2 diabetes, which are also known to be associated with activated innate immunity, are age, inactivity, certain dietary components, smoking, psychological stress, and low birth weight. Activated immunity may be the common antecedent of both type 2 diabetes and atherosclerosis, which probably develop in parallel. Other features of type 2 diabetes, such as fatigue, sleep disturbance, and depression, are likely to be at least partly due to hypercytokinemia and activated innate immunity. Further research is needed to confirm and clarify the role of innate immunity in type 2 diabetes, particularly the extent to which inflammation in type 2 diabetes is a primary abnormality or partly secondary to hyperglycemia, obesity, atherosclerosis, or other common features of the disease.
                Bookmark

                Author and article information

                Contributors
                neil.lagali@liu.se
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 September 2018
                24 September 2018
                2018
                : 8
                : 14248
                Affiliations
                [1 ]ISNI 0000 0001 2162 9922, GRID grid.5640.7, Department of Ophthalmology, Institute for Clinical and Experimental Medicine, , Linköping University, ; 58183 Linköping, Sweden
                [2 ]ISNI 0000 0004 0414 4503, GRID grid.414311.2, Department of Ophthalmology, , Sørlandet Hospital Arendal, ; Arendal, Norway
                [3 ]National Centre for Optics, Vision and Eye Care, Faculty of Visual and Health Sciences, The University of South-Eastern Norway, Kongsberg, Norway
                [4 ]Unit of Regenerative Medicine, Department of Medical Biochemistry, Oslo University Hospital, and University of Oslo, 0407 Oslo, Norway
                [5 ]Øyelegesenteret i Tromsø, Fjærevegen 6, 9024 Tomasjord, Norway
                [6 ]ISNI 0000 0004 1936 9457, GRID grid.8993.b, Department of Medical Sciences, , Uppsala University, ; Uppsala, Sweden
                [7 ]ISNI 0000 0001 0304 6002, GRID grid.411953.b, School of Health and Social Sciences, , Dalarna University, ; Falun, Sweden
                [8 ]ISNI 0000 0004 1937 0626, GRID grid.4714.6, Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, , Karolinska Institutet, ; Huddinge, Sweden
                [9 ]Department of Translational Medicine - Hand Surgery, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
                [10 ]ISNI 0000 0001 1034 3451, GRID grid.12650.30, Department of Public Health and Clinical Medicine, Family Medicine, , Umeå University, ; 90187 Umeå, Sweden
                Author information
                http://orcid.org/0000-0003-1079-4361
                Article
                32410
                10.1038/s41598-018-32410-5
                6155153
                30250206
                d2d47956-67ae-4837-a553-0d55e6fc8427
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 March 2018
                : 3 September 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article