1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sequence conservation of mitochondrial (mt)DNA during expansion of clonal mammary epithelial populations suggests a common mtDNA template in CzechII mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One major foundation of cancer etiology is the process of clonal expansion. The mechanisms underlying the complex process of a single cell leading to a clonal dominant tumor, are poorly understood. Our study aims to analyze mitochondrial DNA (mtDNA) for somatic single nucleotide polymorphisms (SNPs) variants, to determine if they are conserved throughout clonal expansion in mammary tissues and tumors. To test this hypothesis, we took advantage of a mouse mammary tumor virus (MMTV)-infected mouse model (CzechII). CzechII mouse mtDNA was extracted, from snap-frozen normal, hyperplastic, and tumor mammary epithelial outgrowth fragments. Next generation deep sequencing was used to determine if mtDNA “ de novo” SNP variants are conserved during serial transplantation of both normal and neoplastic mammary clones. Our results support the conclusion that mtDNA “ de novo” SNP variants are selected for and maintained during serial passaging of clonal phenotypically heterogeneous normal cellular populations; neoplastic cellular populations; metastatic clonal cellular populations and in individual tumor transplants, grown from the original metastatic tumor. In one case, a mammary tumor arising from a single cell, within a clonal hyperplastic outgrowth, contained only mtDNA copies, harboring a deleterious “ de novo” SNP variant, suggesting that only one mtDNA template may act as a template for all mtDNA copies regardless of cell phenotype. This process has been attributed to “heteroplasmic-shifting”. A process that is thought to result from selective pressure and may be responsible for pathogenic mutated mtDNA copies becoming homogeneous in clonal dominant oncogenic tissues.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial DNA mutations in human cancer.

          Somatic mitochondrial DNA (mtDNA) mutations have been increasingly observed in primary human cancers. As each cell contains many mitochondria with multiple copies of mtDNA, it is possible that wild-type and mutant mtDNA can co-exist in a state called heteroplasmy. During cell division, mitochondria are randomly distributed to daughter cells. Over time, the proportion of the mutant mtDNA within the cell can vary and may drift toward predominantly mutant or wild type to achieve homoplasmy. Thus, the biological impact of a given mutation may vary, depending on the proportion of mutant mtDNAs carried by the cell. This effect contributes to the various phenotypes observed among family members carrying the same pathogenic mtDNA mutation. Most mutations occur in the coding sequences but few result in substantial amino acid changes raising questions as to their biological consequence. Studies reveal that mtDNA play a crucial role in the development of cancer but further work is required to establish the functional significance of specific mitochondrial mutations in cancer and disease progression. The origin of somatic mtDNA mutations in human cancer and their potential diagnostic and therapeutic implications in cancer are discussed. This review article provides a detailed summary of mtDNA mutations that have been reported in various types of cancer. Furthermore, this review offers some perspective as to the origin of these of mutations, their functional consequences in cancer development, and possible therapeutic implications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Facile detection of mitochondrial DNA mutations in tumors and bodily fluids.

            Examination of human bladder, head and neck, and lung primary tumors revealed a high frequency of mitochondrial DNA (mtDNA) mutations. The majority of these somatic mutations were homoplasmic in nature, indicating that the mutant mtDNA became dominant in tumor cells. The mutated mtDNA was readily detectable in paired bodily fluids from each type of cancer and was 19 to 220 times as abundant as mutated nuclear p53 DNA. By virtue of their clonal nature and high copy number, mitochondrial mutations may provide a powerful molecular marker for noninvasive detection of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An entire functional mammary gland may comprise the progeny from a single cell.

              Any epithelial portion of a normal mouse mammary gland can reproduce an entire functional gland when transplanted into an epithelium-free mammary fat pad. Mouse mammary hyperplasias and tumors are clonal dominant populations and probably represent the progeny of a single transformed cell. Our study provides evidence that single multipotent stem cells positioned throughout the mature fully developed mammary gland have the capacity to produce sufficient differentiated progeny to recapitulate an entire functional gland. Our evidence also demonstrates that these stem cells are self-renewing and are found with undiminished capacities in the newly regenerated gland. We have taken advantage of an experimental model where mouse mammary tumor virus infects mammary epithelial cells and inserts a deoxyribonucleic acid copy(ies) of its genome during replication. The insertions occur randomly within the somatic genome. CzechII mice have no endogenous nucleic acid sequence homology with mouse mammary tumor virus; therefore all viral insertions may be detected by Southern analysis provided a sufficient number of cells contain a specific insertional event. Transplantation of random fragments of infected CzechII mammary gland produced clonal-dominant epithelial populations in epithelium-free mammary fat pads. Serial transplantation of pieces of the clonally derived outgrowths produced second generation glands possessing the same viral insertion sites providing evidence for self-renewal of the original stem cell. Limiting dilution studies with cell cultures derived from third generation clonal outgrowths demonstrated that three multipotent but distinct mammary epithelial progenitors were present in clonally derived mammary epithelial populations. Estimation of the potential number of multipotent epithelial cells that may be evolved from an individual mammary-specific stem cell by self-renewal is in the order of 10(12)-10(13). Therefore, one stem cell might easily account for the renewal of mammary epithelium over several transplant generations.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Impact Journals LLC
                Oncotarget
                Impact Journals LLC
                1949-2553
                14 January 2020
                14 January 2020
                : 11
                : 2
                : 161-174
                Affiliations
                1Mammary Stem Cell Biology Section, National Cancer Institute, Bethesda, MD 20892, USA
                2Bioinformatics Manager/Lead, NIAID Collaborative Bioinformatics Resource (NCBR) Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 20894, USA
                3Department of Population Sciences, City of Hope, Duarte, CA 91107, USA
                Author notes
                Correspondence to: Gilbert H. Smith, email : smithg@ 123456mail.nih.gov
                Article
                27429
                10.18632/oncotarget.27429
                6968779
                d31e18fa-5d9b-4231-81c1-561887190dce

                Copyright: Johnson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 08 November 2019
                : 21 December 2019
                Categories
                Research Paper

                Oncology & Radiotherapy
                mitochondrial dna,next-generation sequencing,clonal expansion,mammary cancer

                Comments

                Comment on this article