0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel approaches to glaucomatous neurodegeneration, based on the integrated stress response

      news

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          The integrated stress response.

          In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms, regulation and functions of the unfolded protein response

            Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The integrated stress response: From mechanism to disease

              Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell’s proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                American Society of Gene & Cell Therapy
                2162-2531
                26 August 2023
                12 September 2023
                26 August 2023
                : 33
                : 845-847
                Affiliations
                [1 ]Laboratório de Neurogênese, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
                [2 ]Laboratório de Terapia Gênica e Vetores Virais, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
                Author notes
                []Corresponding author: Rafael Linden, Laboratório de Neurogênese, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil. rlinden@ 123456biof.ufrj.br
                Article
                S2162-2531(23)00233-0
                10.1016/j.omtn.2023.08.022
                10474567
                37662966
                d36b0af4-4ce8-4410-b2b9-0790d7f806f2
                © 2023 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Commentary

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article