43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environmental conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion deficient strains were obtained by culturing V. alginolyticus under stresses including Cu, Pb, Hg, and low pH. With RNA-seq and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environmental conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that (1) the flagellar assembly pathway was sensitive to environmental stresses, (2) the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and (3) motility is not the only way in which the flagellar assembly pathway affects adhesion.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

          The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression.

            Pathogens adapt to the host environment by altering their patterns of gene expression. Microarray-based and genetic techniques used to characterize bacterial gene expression during infection are limited in their ability to comprehensively and simultaneously monitor genome-wide transcription. We used massively parallel cDNA sequencing (RNA-seq) techniques to quantitatively catalog the transcriptome of the cholera pathogen, Vibrio cholerae, derived from two animal models of infection. Transcripts elevated in infected rabbits and mice relative to laboratory media derive from the major known V. cholerae virulence factors and also from genes and small RNAs not previously linked to virulence. The RNA-seq data was coupled with metabolite analysis of cecal fluid from infected rabbits to yield insights into the host environment encountered by the pathogen and the mechanisms controlling pathogen gene expression. RNA-seq-based transcriptome analysis of pathogens during infection produces a robust, sensitive, and accessible data set for evaluation of regulatory responses driving pathogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbes and metals: interactions in the environment.

              Research on the behaviour of microorganisms in geogenic or anthropogenic metallomorphic environments is an integral part of geomicrobiology. The investigation of microbial impact on the fate of minerals and geologically significant compounds of mining areas can lead to an understanding of biogeochemical cycles. Metabolic processes of microorganisms are the cause for the dissolution of minerals, and especially pyrite oxidation results in the generation of acid mine drainage which, in turn, leads to heavy metal contamination as a result of mining activities. On the other hand, microbial metabolism can also contribute to the formation of certain ore deposits over geological time. The adaptation to heavy metal rich environments is resulting in microorgansims which show activities for biosorption, bioprecipitation, extracellular sequestration, transport mechanisms, and/or chelation. Such resistance mechanisms are the basis for the use of microorganisms in bioremediation approaches. As only a small part of the worldwide occurring prokaryotes has been described yet, the understanding of the role bacteria play in a geogenic and pedogenic context is very likely to change deeply as soon as more habitat relevant microbial functions can be described. Examples for the identification of microbial processes from case studies may help to advance this field. The strongly interdisciplinary field of bio-geo-interactions spanning from the microorganism to the mineral holds much promise for future developments in both basic research as well as applied sciences. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                12 August 2015
                2015
                : 5
                : 59
                Affiliations
                [1] 1Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
                [2] 2College of Ocean and Earth Sciences, Xiamen University Xiamen, China
                Author notes

                Edited by: Matthew S. Francis, Umeå University, Sweden

                Reviewed by: Shin-Ichi Miyoshi, Okayama University, Japan; Hans Rediers, KU Leuven - Campus De Nayer, Belgium; David R. Nelson, University of Rhode Island, USA

                *Correspondence: Qingpi Yan, Fisheries College, Jimei University, Yindou Street 43, Xiamen, Fujian 361021, China yanqp@ 123456jmu.edu.cn

                †Co-first author.

                Article
                10.3389/fcimb.2015.00059
                4533019
                d387a832-e32c-4b10-96ed-fcdd44400e39
                Copyright © 2015 Wang, Huang, Su, Qin, Kong, Ma, Xu, Lin, Zheng and Yan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 April 2015
                : 30 July 2015
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 29, Pages: 9, Words: 5976
                Categories
                Microbiology
                Original Research

                Infectious disease & Microbiology
                vibrio alginolyticus,adhesion,flagellar assembly pathway,environmental stresses

                Comments

                Comment on this article