20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Social transmission of Pavlovian fear: fear-conditioning by-proxy in related female rats

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate’s response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80–84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Social learning of fear.

          Research across species highlights the critical role of the amygdala in fear conditioning. However, fear conditioning, involving direct aversive experience, is only one means by which fears can be acquired. Exploiting aversive experiences of other individuals through social fear learning is less risky. Behavioral research provides important insights into the workings of social fear learning, and the neural mechanisms are beginning to be understood. We review research suggesting that an amygdala-centered model of fear conditioning can help to explain social learning of fear through observation and instruction. We also describe how observational and instructed fear is distinguished by involvement of additional neural systems implicated in social-emotional behavior, language and explicit memory, and propose a modified conditioning model to account for social fear learning. A better understanding of social fear learning promotes integration of biological principles of learning with cultural evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy.

            The hormonal factors associated with converting a corpus luteum of estrous cycle into a corpus luteum of pseudopregnancy were studied by measuring LH and FSH prolactin, estradiol and progesterone levels in decapitated rats during the 4-day estrous cycle and a comparable time of pseudopregnancy (lights on 0600-0800 hr.). During the estrous cycle, prolactin, LH and FSH remained low and unchanging except on the afternoon of proestrus, when typical proestrous surges were observed. In contrast, estradiol levels began to increase on D-1, from baseline values of 7 pg/ml to approximately 15-20 pg/ml. These levels were maintained until the afternoon of D-2 when estradiol further increased to reach peak levels of 40-50 pg/ml by 0900 hr on proestrus. Estradiol then declined in relation to the increase in LH secreation and had returned to baseline by estrus. Progesterone secretion by the corpora lutea of the cycle also increased on the afternoon of D-1 and reached a maximum value of 25-30 ng/ml early on the morning of D-2. At this time, a precipitious fall in progesterone occurred, returning to baseline values of 5-1- ng/ml by 0700 on D-2 signifying the regression of the corpora lutea of the cycle. Progesterone remained low thereafter until the afternoon of proestrus when levels increased in response to the proestrus when levels increased in response to the proestrous surge of LH. Following cervical stimulation at 1900 hr on proestrus, no differences were noted, with respect to the estrous cycle, in LH, FSH or estradiol secreation through the afternoon of D-2. Surprisingly, progesterone levels did not differ in the cycle and pseudopregnancy until the early morning of D-29 instead of progesterone levels falling to baseline as they had during the cycle, the corpora lutea of pseudopregnancy were rescused, progesterone increasing dramatically to reach levels of 45-50 ng/ml by 1700 hr on that same day. The only difference in hormone secretion that was noted which could account for this marked divergence in progesterone secretion was the pattern of prolactin secretion following cervical stimulation. In contrast to the low levels seen during the estrous cycle, biphasio surges of prolactin secretion occured each day, one being nocturnal (0100-0900 hr) and the other diurnal (1500-2100 hr). The rescue of the corpus luteum occured in association with the nocturnal surge on D-2. These results suggest that nocturnal surge on D-2, PROLACTIN IS THE MAJOR Luteotropic stimulus which transforms and estrous cycle into pseudopregnancy by prolonging progesterone secretion from the corpus luteum. Moreover, if LH is important for progesterone secretion, no changes were observed in the pattern of LH secretion which can account for the rescue of the corpus luteum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determination of the estrous cycle phases of rats: some helpful considerations.

              The short length of the estrous cycle of rats makes them ideal for investigation of changes occurring during the reproductive cycle. The estrous cycle lasts four days and is characterized as: proestrus, estrus, metestrus and diestrus, which may be determined according to the cell types observed in the vaginal smear. Since the collection of vaginal secretion and the use of stained material generally takes some time, the aim of the present work was to provide researchers with some helpful considerations about the determination of the rat estrous cycle phases in a fast and practical way. Vaginal secretion of thirty female rats was collected every morning during a month and unstained native material was observed using the microscope without the aid of the condenser lens. Using the 10 x objective lens, it was easier to analyze the proportion among the three cellular types, which are present in the vaginal smear. Using the 40 x objective lens, it is easier to recognize each one of these cellular types. The collection of vaginal lavage from the animals, the observation of the material, in the microscope, and the determination of the estrous cycle phase of all the thirty female rats took 15-20 minutes.
                Bookmark

                Author and article information

                Contributors
                +1-512-4714139 , marie.monfils@utexas.edu
                Journal
                Anim Cogn
                Anim Cogn
                Animal Cognition
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1435-9448
                1435-9456
                6 December 2013
                6 December 2013
                2014
                : 17
                : 827-834
                Affiliations
                [ ]Department of Psychology, Center for Learning and Memory, The University of Texas at Austin, 108 E. Dean Keeton, A8000, Austin, TX 78712-1043 USA
                [ ]Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 108 E. Dean Keeton, A8000, Austin, TX 78712-1043 USA
                [ ]Center for Learning and Memory, The University of Texas at Austin, 108 E. Dean Keeton, A8000, Austin, TX 78712-1043 USA
                Article
                711
                10.1007/s10071-013-0711-2
                3984423
                24310150
                d3c62a4a-6542-45fc-88f3-1ccb73cc9ff6
                © The Author(s) 2013

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 7 May 2013
                : 2 November 2013
                : 15 November 2013
                Categories
                Short Communication
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2014

                Animal science & Zoology
                social transmission,fear-conditioning,observational learning,indirect conditioning

                Comments

                Comment on this article