66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vaccination with DNA Plasmids Expressing Gn Coupled to C3d or Alphavirus Replicons Expressing Gn Protects Mice against Rift Valley Fever Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent.

          Methodology/Principal Findings

          We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12.

          Conclusion/Significance

          These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use.

          Author Summary

          Rift Valley fever virus (RVFV) is an arthropod-borne phlebovirus associated with abortion storms, neonatal mortality in livestock and hemorrhagic fever or fatal encephalitis in a proportion of infected humans. Requirement of multiple booster immunizations to maintain the level of protective immunity with the inactivated vaccines and the ability of live-attenuated vaccines to cause detrimental side-effects are major limitations preventing the widespread use of current vaccines. In this paper, we describe the use of DNA and alphavirus replicon based vaccination approaches to elicit a protective immune response against RVFV. While both vaccines elicited high titer antibodies, DNA vaccination elicited high titer neutralizing antibodies, whereas the replicon vaccine elicited cellular immune responses. Both strategies alone or in combination elicited immune response that completely protected against not only mortality, but also illness. Even though the delivery vectors elicited some protection on their own, they did not prevent severe morbidity. These promising vaccines provide an alternative RVFV vaccine for livestock and humans.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          DNA vaccines: ready for prime time?

          Since the discovery, over a decade and a half ago, that genetically engineered DNA can be delivered in vaccine form and elicit an immune response, there has been much progress in understanding the basic biology of this platform. A large amount of data has been generated in preclinical model systems, and more sustained cellular responses and more consistent antibody responses are being observed in the clinic. Four DNA vaccine products have recently been approved, all in the area of veterinary medicine. These results suggest a productive future for this technology as more optimized constructs, better trial designs and improved platforms are being brought into the clinic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics.

            This cohort descriptive study summarizes the epidemiological, clinical, and laboratory characteristics of the Rift Valley fever (RVF) epidemic that occurred in Saudi Arabia from 26 August 2000 through 22 September 2001. A total of 886 cases were reported. Of 834 reported cases for which laboratory results were available, 81.9% were laboratory confirmed, of which 51.1% were positive for only RVF immunoglobulin M, 35.7% were positive for only RVF antigen, and 13.2% were positive for both. The mean age (+/- standard deviation) was 46.9+/-19.4 years, and the ratio of male to female patients was 4:1. Clinical and laboratory features included fever (92.6% of patients), nausea (59.4%), vomiting (52.6%), abdominal pain (38.0%), diarrhea (22.1%), jaundice (18.1%), neurological manifestations (17.1%), hemorrhagic manifestations (7.1%), vision loss or scotomas (1.5%), elevated liver enzyme levels (98%), elevated lactate dehydrogenase level (60.2%), thrombocytopenia (38.4%), leukopenia (39.7%), renal impairment or failure (27.8%), elevated creatine kinase level (27.3%), and severe anemia (15.1%). The mortality rate was 13.9%. Bleeding, neurological manifestations, and jaundice were independently associated with a high mortality rate. Patients with leukopenia had significantly a lower mortality rate than did those with a normal or high leukocyte count (2.3% vs. 27.9%; odds ratio, 0.09; 95% confidence interval, 0.01-0.63).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C3d of complement as a molecular adjuvant: bridging innate and acquired immunity.

              An optimal immune response should differentiate between harmful and innocuous antigens. Primitive systems of innate immunity, such as the complement system, may play a role in this distinction. When activated, the C3 component of complement attaches to potential antigens on microorganisms. To determine whether this alters acquired immune recognition, mice were immunized with a recombinant model antigen, hen egg lysozyme (HEL), fused to murine C3d. HEL bearing two and three copies of C3d was 1000- and 10,000-fold more immunogenic, respectively, than HEL alone. Thus, C3d is a molecular adjuvant of innate immunity that profoundly influences an acquired immune response.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                June 2010
                22 June 2010
                : 4
                : 6
                : e725
                Affiliations
                [1 ]Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [2 ]Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [3 ]Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [4 ]Department of Microbiology and Immunology, The Carolina Vaccine Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
                Tulane School of Public Health and Tropical Medicine, United States of America
                Author notes

                Conceived and designed the experiments: NB MTH TMR. Performed the experiments: NB. Analyzed the data: NB MTH TMR. Contributed reagents/materials/analysis tools: MTH. Wrote the paper: NB MTH TMR.

                Article
                09-PNTD-RA-0735R3
                10.1371/journal.pntd.0000725
                2889828
                20582312
                d3f8e7ea-7011-4294-931d-5893fabdf98f
                Bhardwaj et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 December 2009
                : 3 May 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Immunology/Immune Response
                Infectious Diseases/Neglected Tropical Diseases
                Infectious Diseases/Viral Infections
                Virology/Vaccines

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article