4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The ball-in-play vs. ball-out-of-play match demands of elite senior hurling

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global positioning system: a new opportunity in physical activity measurement

          Accurate measurement of physical activity is a pre-requisite to monitor population physical activity levels and design effective interventions. Global Positioning System (GPS) technology offers potential to improve the measurement of physical activity. This paper 1) reviews the extant literature on the application of GPS to monitor human movement, with a particular emphasis on free-living physical activity, 2) discusses issues associated with GPS use, and 3) provides recommendations for future research. Overall findings show that GPS is a useful tool to augment our understanding of physical activity by providing the context (location) of the activity and used together with Geographical Information Systems can provide some insight into how people interact with the environment. However, no studies have shown that GPS alone is a reliable and valid measure of physical activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Validity and Between-Unit Variability of GNSS Units (STATSports Apex 10 and 18 Hz) for Measuring Distance and Peak Speed in Team Sports

            The aims of this study were (i) to investigate the criterion validity (vs. gold standard measurements) of the 10 and 18 Hz STATSports Apex units for measuring distances and peak speed (Vpeak) outcomes and (ii) to investigate the between-unit variability. Twenty university students were enrolled in the study (age 21 ± 2 years, weight 72 ± 6 kg, and height 1.76 ± 0.05 m). The criterion validity was tested by comparing the distances recorded by the units with ground truth reference (400-m trial, 128.5-m circuit, and 20-m trial). Vpeak values were compared with those determined by a gold standard criterion device (Stalker ATS Radar Gun) during a linear 20-m sprint. The distance biases for the Apex 10 Hz in the 400-m trial, 128.5-m circuit, and 20-m trial were 1.05 ± 0.87%, 2.3 ± 1.1%, and 1.11 ± 0.99%, respectively, while for the Apex 18 Hz the biases were 1.17 ± 0.73%, 2.11 ± 1.06%, and 1.15 ± 1.23%, respectively. Vpeak measured by the Apex 10 and 18 Hz were 26.5 ± 2.3 km h-1 and 26.5 ± 2.6 km h-1, respectively, with the criterion method reporting 26.3 ± 2.4 km h-1, with a bias of 2.36 ± 1.67% and 2.02 ± 1.24%, respectively. This study is the first to validate and compare the STATSports Apex 10 and 18 Hz. Between-analysis (t-test) for total distance and Vpeak reported non-significant differences. Apex units reported a small error of around 1–2% compared to the criterion distances during 400-m, 128.5-m circuit, 20-m trials, and Vpeak. In conclusion, both units could be used with confidence to measure these variables during training and match play.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The worst case scenario: Locomotor and collision demands of the longest periods of gameplay in professional rugby union

              A number of studies have used global positioning systems (GPS) to report on positional differences in the physical game demands of rugby union both on an average and singular bout basis. However, the ability of these studies to report quantitative data is limited by a lack of validation of certain aspects of measurement by GPS micro-technology. Furthermore no study has analyzed the positional physical demands of the longest bouts of ball-in-play time in rugby union. The aim of the present study is to compare the demands of the single longest period of ball-in-play, termed “worst case scenario” (WCS) between positional groups, which have previously been reported to have distinguishable game demands. The results of this study indicate that WCS periods follow a similar sporadic pattern as average demands but are played at a far higher pace than previously reported for average game demands with average meters per minute of 116.8 m. The positional differences in running and collision activity previously reported are perpetuated within WCS periods. Backs covered greater total distances than forwards (318 m vs 289 m), carried out more high-speed running (11.1 m·min-1 vs 5.5 m·min-1) and achieved higher maximum velocities (MaxVel). Outside Backs achieved the highest MaxVel values (6.84 m·sec-1). Tight Five and Back Row forwards underwent significantly more collisions than Inside Back and Outside Backs (0.73 & 0.89 collisions·min-1 vs 0.28 & 0.41 collisions·min-1 respectively). The results of the present study provide information on the positional physical requirements of performance in prolonged periods involving multiple high intensity bursts of effort. Although the current state of GPS micro-technology as a measurement tool does not permit reporting of collision intensity or acceleration data, the combined use of video and GPS provides valuable information to the practitioner. This can be used to match and replicate game demands in training.
                Bookmark

                Author and article information

                Contributors
                Journal
                Sport Sciences for Health
                Sport Sci Health
                Springer Science and Business Media LLC
                1824-7490
                1825-1234
                March 15 2021
                Article
                10.1007/s11332-020-00725-4
                d4161ba4-397b-4f5b-80a5-367e53904411
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article