2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of laryngeal squamous cell cancer progression by the lncRNA RP11‐159K7.2/miR‐206/DNMT3A axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long non‐coding RNAs (lncRNAs), which are longer than 200 nt, have been proved to play a role in promoting or inhibiting cancer progression. The following study investigated the role and underlying mechanisms of lncRNA RP11‐159K7.2 in laryngeal squamous cell carcinoma (LSCC) progression. Briefly, in situ hybridization (ISH) and real‐time quantitative PCR (RT‐qPCR) showed higher expression of RP11‐159K7.2 in LSCC tissues and cell lines. Patients with low expression level of RP11‐159K7.2 lived longer compared to those with high expression of RP11‐159K7.2 ( χ 2 = 39.111, *** P < 0.001). Multivariate Cox regression analysis suggested that lncRNA RP11‐159K7.2 was an independent prognostic factor for LSCC patients (HR = 2.961, *** P < 0.001). Furthermore, to investigate the potential involvement of RP11‐159K7.2 in the development of LSCC, we knocked out the expression of endogenous RP11‐159K7.2 in TU‐212 cells and AMC‐HN‐8 cells via CRISPR/Cas9 double vector lentiviral system. RP11‐159K7.2 knockout decreased LSCC cell growth and invasion both in vitro and in vivo. Mechanically, we found that RP11‐159K7.2 could positively regulate the expression of DNMT3A by sponging miR‐206. In addition, a feedback loop was also discovered between DNMT3A and miR‐206. To sum up, these findings suggest that lncRNA RP11‐159K7.2 could be used as a potential biomarker for prognosis and treatment of LSCC.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene.

          A 42 kb region on human chromosome 9p21 encodes for three distinct tumor suppressors, p16(INK4A), p14(ARF) and p15(INK4B), and is altered in an estimated 30-40% of human tumors. The expression of the INK4A-ARF-INK4B gene cluster is silenced by polycomb during normal cell growth and is activated by oncogenic insults and during aging. How the polycomb is recruited to repress this gene cluster is unclear. Here, we show that expression of oncogenic Ras, which stimulates the expression of p15(INK4B) and p16(INK4A), but not p14(ARF), inhibits the expression of ANRIL (antisense non-coding RNA in the INK4 locus), a 3.8 kb-long non-coding RNA expressed in the opposite direction from INK4A-ARF-INK4B. We show that the p15(INK4B) locus is bound by SUZ12, a component of polycomb repression complex 2 (PRC2), and is H3K27-trimethylated. Notably, depletion of ANRIL disrupts the SUZ12 binding to the p15(INK4B) locus, increases the expression of p15(INK4B), but not p16(INK4A) or p14(ARF), and inhibits cellular proliferation. Finally, RNA immunoprecipitation demonstrates that ANRIL binds to SUZ12 in vivo. Collectively, these results suggest a model in which ANRIL binds to and recruits PRC2 to repress the expression of p15(INK4B) locus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Genetic Signatures of Noncoding RNAs

            The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging roles of lncRNA in cancer and therapeutic opportunities.

              Cancer is difficult to cure due to frequent metastasis, and developing effective therapeutic approaches to treat cancer is urgently important. Long non-coding RNAs (lncRNAs) have diverse roles in regulating gene expression at both the transcriptional and translational levels and have been reported to be involved in tumorigenesis and tumor metastasis. In this article, we review the emerging roles of lncRNAs in cancer, especially in cancer immunity, cancer metabolism and cancer metastasis. We also discuss the use of novel technologies, such as antisense oligonucleotides, CRISPR-Cas9 and nanomedicines, to target lncRNAs and thus control cancers.
                Bookmark

                Author and article information

                Contributors
                syn2767@126.com , Tian0041@126.com
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                04 May 2020
                June 2020
                : 24
                : 12 ( doiID: 10.1111/jcmm.v24.12 )
                : 6781-6795
                Affiliations
                [ 1 ] Department of Otorhinolaryngology, Head and Neck Surgery The Second Affiliated Hospital Harbin Medical University Harbin China
                [ 2 ] Department of Otorhinolaryngology, Head and Neck Surgery Puyang Oilfield General Hospital Puyang China
                [ 3 ] Department of Otorhinolaryngology Daqing Oilfield General Hospital Daqing China
                [ 4 ] Department of Otolaryngology Daqing First Hospital Daqing China
                [ 5 ] Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital Guizhou University of Traditional Chinese Medicine Guizhou China
                Author notes
                [*] [* ] Correspondence

                Yanan Sun and Linli Tian, Department of Otorhinolaryngology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150000, China.

                Email: syn2767@ 123456126.com (Y. S.); Tian0041@ 123456126.com (L. T.)

                Author information
                https://orcid.org/0000-0003-4587-3297
                Article
                JCMM15331
                10.1111/jcmm.15331
                7299727
                32363688
                d42a4239-cb56-410b-8159-af8052d9aad7
                © 2020 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 November 2019
                : 27 February 2020
                : 12 April 2020
                Page count
                Figures: 7, Tables: 3, Pages: 15, Words: 7621
                Funding
                Funded by: National Natural Science Foundation of China , open-funder-registry 10.13039/501100001809;
                Award ID: 81772874
                Award ID: 81272965
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                June 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.4 mode:remove_FC converted:17.06.2020

                Molecular medicine
                crispr/cas9,dnmt3a,laryngeal squamous cell cancer (lscc),long non‐coding rna,microrna

                Comments

                Comment on this article