21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feasibility of Decentralised Deployment of Xpert MTB/RIF Test at Lower Level of Health System in India

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Xpert MTB/RIF is an automated cartridge-based nucleic acid amplification test that has demonstrated its potential to detect tuberculosis and rifampicin resistance with high accuracy. To assist scale-up decisions in India, a feasibility assessment of Xpert MTB/RIF implementation was conducted within microscopy centres of 18 RNTCP TB units.

          Methods

          As part of programme-based demonstration of Xpert MTB/RIF implementation, we recorded and analysed association between key implementation factors and the ability of test to produce valid results. Factors contributing to test failures were analysed from GeneXpert software data which provides ‘failure codes’ and causes for test failures.

          Results

          From March’12 to January’13, total 40,035 suspects were tested by Xpert MTB/RIF, and 39,680 (99.1%) received valid results (Cumulative: 37157 (92.8%) on first attempt, 39410 (98.4%) on second attempt, 39637 (99.0%) on third attempt and 39680 (99.1%) on more attempts). Overall initial test failure was 2,878 (7.2% (4%–17%)); of these, 2,594 (90.1%) were re-tested and produced valid results. Most frequent reason of test failure was inadequate sample processing or equipment malfunction (3.9%). Other reasons included power failure (1.1%), cartridge integrity/component failure (0.8%), device-computer communication error (0.5%), and temperature-related errors (0.08%). Significant variation was observed in failure rates both across instruments and over time; furthermore, substantial variation was observed in failure rate in two cartridges lots.

          Conclusion

          Installation required minimal infrastructure modifications and concerns about adequacy of human resources under public sector facilities and temperature extremes proved unfounded. Under routine conditions, Xpert MTB/RIF provided 99.1% valid results in TB suspects with low overall failure rates (7.2% initial failure, 0.9% final failure); devices provided valuable real-time feedback on reasons for test failure, which were used for rapid corrective action. High modular replacement (32%) and inter-lot cartridge performance variation remain sources of concern, and warrant close monitoring of failure rates as a key quality indicator.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa.

          The dual challenges to tuberculosis (TB) control of HIV infection and multidrug resistance are particularly pressing in South Africa. Conventional methods for detecting Mycobacterium tuberculosis drug resistance take weeks to months to produce results. Rapid molecular testing for drug resistance is available but has not been implemented in high-TB-burden settings. To assess the performance and feasibility of implementation of a commercially available molecular line-probe assay for rapid detection of rifampicin and isoniazid resistance. We performed the assay directly on 536 consecutive smear-positive sputum specimens from patients at increased risk of multidrug-resistant (MDR) TB in a busy routine diagnostic laboratory in Cape Town, South Africa. Results were compared with conventional liquid culture and drug susceptibility testing on solid medium. Overall, 97% of smear-positive specimens gave interpretable results within 1-2 days using the molecular assay. Sensitivity, specificity, and positive and negative predictive values were 98.9, 99.4, 97.9, and 99.7%, respectively, for detection of rifampicin resistance; 94.2, 99.7, 99.1, and 97.9%, respectively, for detection of isoniazid resistance; and 98.8, 100, 100, and 99.7%, respectively, for detection of multidrug resistance compared with conventional results. The assay also performed well on specimens that were contaminated on conventional culture and on smear-negative, culture-positive specimens. This molecular assay is a highly accurate screening tool for MDR TB, which achieves a substantial reduction in diagnostic delay. With overall performance characteristics that are superior to conventional culture and drug susceptibility testing and the possibility for high throughput with substantial cost savings, molecular testing has the potential to revolutionize MDR TB diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Rapid screening of MDR-TB using molecular Line Probe Assay is feasible in Uganda

            Background About 500 new smear-positive Multidrug-resistant tuberculosis (MDR-TB) cases are estimated to occur per year in Uganda. In 2008 in Kampala, MDR-TB prevalence was reported as 1.0% and 12.3% in new and previously treated TB cases respectively. Line probe assays (LPAs) have been recently approved for use in low income settings and can be used to screen smear-positive sputum specimens for resistance to rifampicin and isoniazid in 1-2 days. Methods We assessed the performance of a commercial line probe assay (Genotype MTBDRplus) for rapid detection of rifampicin and isoniazid resistance directly on smear-positive sputum specimens from 118 previously treated TB patients in a reference laboratory in Kampala, Uganda. Results were compared with MGIT 960 liquid culture and drug susceptibility testing (DST). LPA testing was also performed in parallel in a University laboratory to assess the reproducibility of results. Results Overall, 95.8% of smear-positive specimens gave interpretable results within 1-2 days using LPA. Sensitivity, specificity, positive and negative predictive values were 100.0%, 96.1%, 83.3% and 100.0% for detection of rifampicin resistance; 80.8%, 100.0%, 100.0% and 93.0% for detection of isoniazid resistance; and 92.3%, 96.2%, 80.0% and 98.7% for detection of multidrug-resistance compared with conventional results. Reproducibility of LPA results was very high with 98.1% concordance of results between the two laboratories. Conclusions LPA is an appropriate tool for rapid screening for MDR-TB in Uganda and has the potential to substantially reduce the turnaround time of DST results. Careful attention must be paid to training, supervision and adherence to stringent laboratory protocols to ensure high quality results during routine implementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Use of a Molecular Diagnostic Test in AFB Smear Positive Tuberculosis Suspects Greatly Reduces Time to Detection of Multidrug Resistant Tuberculosis

              Background The WHO has recommended the implementation of rapid diagnostic tests to detect and help combat M/XDR tuberculosis (TB). There are limited data on the performance and impact of these tests in field settings. Methods The performance of the commercially available Genotype MTBDRplus molecular assay was compared to conventional methods including AFB smear, culture and drug susceptibility testing (DST) using both an absolute concentration method on Löwenstein-Jensen media and broth-based method using the MGIT 960 system. Sputum specimens were obtained from TB suspects in the country of Georgia who received care through the National TB Program. Results Among 500 AFB smear-positive sputum specimens, 458 (91.6%) had both a positive sputum culture for Mycobacterium tuberculosis and a valid MTBDRplus assay result. The MTBDRplus assay detected isoniazid (INH) resistance directly from the sputum specimen in 159 (89.8%) of 177 specimens and MDR-TB in 109 (95.6%) of 114 specimens compared to conventional methods. There was high agreement between the MTBDRplus assay and conventional DST results in detecting MDR-TB (kappa = 0.95, p<0.01). The most prevalent INH resistance mutation was S315T (78%) in the katG codon and the most common rifampicin resistance mutation was S531L (68%) in the rpoB codon. Among 13 specimens from TB suspects with negative sputum cultures, 7 had a positive MTBDRplus assay (3 with MDR-TB). The time to detection of MDR-TB was significantly less using the MTBDRplus assay (4.2 days) compared to the use of standard phenotypic tests (67.3 days with solid media and 21.6 days with broth-based media). Conclusions Compared to conventional methods, the MTBDRplus assay had high accuracy and significantly reduced time to detection of MDR-TB in an area with high MDR-TB prevalence. The use of rapid molecular diagnostic tests for TB and drug resistance should increase the proportion of patients promptly placed on appropriate therapy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                26 February 2014
                : 9
                : 2
                : e89301
                Affiliations
                [1 ]Foundation for Innovative New Diagnostics, New Delhi, India
                [2 ]Central TB Division, Government of India, New Delhi, India
                [3 ]World Health Organization, India Country Office, New Delhi, India
                [4 ]Foundation for Innovative New Diagnostics, Geneva, Switzerland
                California Department of Public Health, United States of America
                Author notes

                Competing Interests: I have read the journal's policy and have the following conflicts: NR, BV, SK, AB, RT, CG, UA, BV, CB and CNP are am employed by FIND, a non-profit organization that collaborates with industry partners,including Cepheid Inc., for the development and evaluation of new diagnostic tests. However, this doesnot alter our adherence to all the PLOS ONE policies on sharing data and materials. Further, none of the authors have any financial or market interest in the product being evaluated under the study.

                Conceived and designed the experiments: NR PD KSS AS RSG B. Vadera MP RT RR UA MG B. Vollepore CB CNP. Performed the experiments: NR B. Vadera SK AB. Analyzed the data: NR B. Vadera SK AB AS KSS CG. Contributed reagents/materials/analysis tools: NR AS KSS RSG. Wrote the paper: NR B. Vadera SK AS KSS CNP CB.

                Article
                PONE-D-13-39456
                10.1371/journal.pone.0089301
                3935858
                24586675
                d473578a-8bdb-4ae8-ae89-72712223fb61
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 September 2013
                : 17 January 2014
                Page count
                Pages: 9
                Funding
                The study was funded by United States Agency for International Development (USAID) through World Health Organization (WHO). FIND was responsible for study design, implementation, training, study coordination and monitoring, data analysis, and writing of the report in close coordination with WHO and Central TB Division. The funder had no participation in the design, implementation, analysis, or preparation of any reports or manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Diagnostic medicine
                Test evaluation
                Global health
                Infectious diseases
                Bacterial diseases
                Tuberculosis
                Tropical diseases (non-neglected)
                Tuberculosis
                Non-clinical medicine
                Health care quality
                Public health
                Health screening

                Uncategorized
                Uncategorized

                Comments

                Comment on this article