2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.

          In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unconventional chiral charge order in kagome superconductor KV3Sb5

            Intertwining quantum order and non-trivial topology is at the frontier of condensed matter physics1-4. A charge-density-wave-like order with orbital currents has been proposed for achieving the quantum anomalous Hall effect5,6 in topological materials and for the hidden phase in cuprate high-temperature superconductors7,8. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2 × 2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2 × 2 charge modulation exhibits an intensity reversal in real space, signalling charge ordering. At the impurity-pinning-free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral charge density wave in the frustrated kagome lattice, which can not only lead to a large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals

                Bookmark

                Author and article information

                Contributors
                Journal
                Nature Physics
                Nat. Phys.
                Springer Science and Business Media LLC
                1745-2473
                1745-2481
                December 2022
                November 07 2022
                December 2022
                : 18
                : 12
                : 1470-1475
                Article
                10.1038/s41567-022-01805-7
                d4c7ef49-beaa-422e-a7fc-78ff271e9e84
                © 2022

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article